
Moisés GarÃ-n EscrivÃ;

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7807879/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Textured PDMS Films Applied to Thin Crystalline Silicon Solar Cells. IEEE Journal of Photovoltaics, 2020, 10, 351-357.	2.5	7
2	Black silicon backâ€contact module with wide light acceptance angle. Progress in Photovoltaics: Research and Applications, 2020, 28, 210-216.	8.1	8
3	Black-Silicon Ultraviolet Photodiodes Achieve External Quantum Efficiency above 130%. Physical Review Letters, 2020, 125, 117702.	7.8	49
4	Direct etching at the nanoscale through nanoparticle-directed capillary condensation. Nanoscale, 2020, 12, 9240-9245.	5.6	4
5	Nanostructured Germanium with >99% Absorption at 300–1600 nm Wavelengths. Advanced Optical Materials, 2020, 8, 2000047.	7.3	18
6	Impact of doping and silicon substrate resistivity on the blistering of atomic-layer-deposited aluminium oxide. Applied Surface Science, 2020, 522, 146400.	6.1	4
7	Thermal Emission of Silicon at Near-Infrared Frequencies Mediated by Mie Resonances. ACS Photonics, 2019, 6, 3174-3179.	6.6	6
8	Influence of a Gold Seed in Transparent V ₂ O<italic> _x </italic>/Ag/V ₂ O<italic> _x </italic> Selective Contacts for Dopant-Free Silicon Solar Cells. IEEE Journal of Photovoltaics, 2019, 9, 72-77.	2.5	6
9	Empirical demonstration of CO ₂ detection using macroporous silicon photonic crystals as selective thermal emitters. Optics Letters, 2019, 44, 4535.	3.3	7
10	Enabling silicon-on-silicon photonics with pedestalled Mie resonators. Nanoscale, 2018, 10, 14406-14413.	5.6	10
11	Controlling Plateau-Rayleigh instabilities during the reorganization of silicon macropores in the Silicon Millefeuille process. Scientific Reports, 2017, 7, 7233.	3.3	10
12	Spherical silicon photonic microcavities: From amorphous to polycrystalline. Physical Review B, 2016, 93, .	3.2	9
13	In situ size sorting in CVD synthesis of Si microspheres. Scientific Reports, 2016, 6, 38719.	3.3	6
14	Light harvesting by a spherical silicon microcavity. Journal of Applied Physics, 2016, 119, .	2.5	14
15	The Effect of Absorption Losses on the Optical Behaviour of Macroporous Silicon Photonic Crystal Selective Filters. Journal of Lightwave Technology, 2016, 34, 1281-1287.	4.6	6
16	Black silicon solar cells with interdigitated back-contacts achieve 22.1% efficiency. Nature Nanotechnology, 2015, 10, 624-628.	31.5	512
17	Three-dimensional metallo-dielectric selective thermal emitters with high-temperature stability for thermophotovoltaic applications. Solar Energy Materials and Solar Cells, 2015, 134, 22-28.	6.2	43
18	All-silicon spherical-Mie-resonator photodiode with spectral response in the infrared region. Nature Communications, 2014, 5, 3440.	12.8	75

Moisés GarÃn EscrivÃi

#	Article	IF	CITATIONS
19	"Silicon millefeuille― From a silicon wafer to multiple thin crystalline films in a single step. Applied Physics Letters, 2013, 102, .	3.3	18
20	Porous silicon microcavities: synthesis, characterization, and application to photonic barcode devices. Nanoscale Research Letters, 2012, 7, 497.	5.7	5
21	Emissive properties of SiO2 thin films through photonic windows. Applied Physics Letters, 2012, 100, .	3.3	5
22	Coherent thermal infrared emission by two-dimensional silicon carbide gratings. Physical Review B, 2012, 86, .	3.2	82
23	Silicon colloids: A new enabling nanomaterial. Journal of Applied Physics, 2011, 109, 102424.	2.5	9
24	Porous Silicon Microcavities Based Photonic Barcodes. Advanced Materials, 2011, 23, 3022-3025.	21.0	32
25	3D metallo-dielectric structures combining electrochemical and electroplating techniques. Microelectronic Engineering, 2010, 87, 1458-1462.	2.4	9
26	Thermal emission of macroporous silicon chirped photonic crystals. Optics Letters, 2010, 35, 3348.	3.3	11
27	Optical properties of 3D macroporous silicon structures. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2008, 149, 275-280.	3.5	12
28	Improving selective thermal emission properties of three-dimensional macroporous silicon through porosity tuning. Applied Physics Letters, 2008, 93, 081913.	3.3	13
29	Infrared thermal emission in macroporous silicon three-dimensional photonic crystals. Applied Physics Letters, 2007, 91, .	3.3	9
30	Post-etching shaping of macroporous silicon. Proceedings of SPIE, 2007, , .	0.8	1
31	Towards more complex shapes of macroporous silicon. , 2007, , .		2
32	Fixed charge density in dielectrics deposited on c-Si using space charge region dominated lifetime measurements. Journal of Applied Physics, 2007, 101, .	2.5	2
33	c-Si surface passivation for photovoltaic applications by means of antireflective amorphous silicon carbide layers. , 2007, , .		4
34	Crystalline silicon surface passivation by amorphous silicon carbide films. Solar Energy Materials and Solar Cells, 2007, 91, 174-179.	6.2	14
35	Tuning the shape of macroporous silicon. Physica Status Solidi (A) Applications and Materials Science, 2007, 204, 3237-3242.	1.8	21
36	Characterization of bifacial heterojunction silicon solar cells obtained by hot-wire CVD. Journal of Non-Crystalline Solids, 2006, 352, 1953-1957.	3.1	5

#	Article	IF	CITATIONS
37	Characterization of a-Si:Hâ^•c-Si interfaces by effective-lifetime measurements. Journal of Applied Physics, 2005, 98, 093711.	2.5	49
38	Effect of amorphous silicon carbide layer thickness on the passivation quality of crystalline silicon surface. Applied Physics Letters, 2005, 87, 202109.	3.3	19
39	Crystalline silicon surface passivation with amorphous SiCx:H films deposited by plasma-enhanced chemical-vapor deposition. Journal of Applied Physics, 2005, 98, 114912.	2.5	24