Yu-Fei Song

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7807574/publications.pdf

Version: 2024-02-01

166	9,864	51	94
papers	citations	h-index	g-index
181	181	181	7818 citing authors
all docs	docs citations	times ranked	

#	Article	IF	Citations
1	Recent advances on polyoxometalate-based molecular and composite materials. Chemical Society Reviews, 2012, 41, 7384.	18.7	783
2	Polyoxometalate-functionalized nanocarbon materials for energy conversion, energy storage and sensor systems. Energy and Environmental Science, 2015, 8, 776-789.	15.6	490
3	Self-Assembly of Organicâ^'Inorganic Hybrid Amphiphilic Surfactants with Large Polyoxometalates as Polar Head Groups. Journal of the American Chemical Society, 2008, 130, 14408-14409.	6.6	291
4	Polyoxometalateâ€Mediated Selfâ€Assembly of Singleâ€Molecule Magnets: {[XW ₉ O ₃₄] ₂ [Mn ^{III} ₄ Mn ^{II} _{2< Angewandte Chemie - International Edition, 2008, 47, 5609-5612.}	:/s rub >O <s< td=""><td>։ubչ5%(</td></s<>	։u bչ5% (
5	Recent advances on polyoxometalates intercalated layered double hydroxides: From synthetic approaches to functional material applications. Coordination Chemistry Reviews, 2014, 258-259, 58-71.	9.5	230
6	Highly Selective Photoreduction of CO ₂ with Suppressing H ₂ Evolution over Monolayer Layered Double Hydroxide under Irradiation above 600â€nm. Angewandte Chemie - International Edition, 2019, 58, 11860-11867.	7.2	224
7	Aggregation of Giant Cerium–Bismuth Tungstate Clusters into a 3D Porous Framework with High Proton Conductivity. Angewandte Chemie - International Edition, 2018, 57, 8416-8420.	7.2	221
8	Environmentally benign polyoxometalate materials. Coordination Chemistry Reviews, 2015, 286, 17-29.	9.5	209
9	Modular Design of Nobleâ€Metalâ€Free Mixed Metal Oxide Electrocatalysts for Complete Water Splitting. Angewandte Chemie - International Edition, 2019, 58, 4644-4648.	7.2	182
10	Noncovalently Connected Frameworks with Nanoscale Channels Assembled from a Tethered Polyoxometalate–Pyrene Hybrid. Angewandte Chemie - International Edition, 2007, 46, 3900-3904.	7.2	180
11	3D printing of versatile reactionware for chemical synthesis. Nature Protocols, 2016, 11, 920-936.	5 . 5	178
12	PVP-encapsulated CoFe2O4/rGO composites with controllable electromagnetic wave absorption performance. Chemical Engineering Journal, 2019, 373, 755-766.	6.6	173
13	Supramolecular Metal Oxides: Programmed Hierarchical Assembly of a Proteinâ€sized 21â€kDa [(C ₁₆ H ₃₆ N) ₁₉ {H ₂ NC(CH ₂ O) ₃ P< Polyoxometalate Assembly. Angewandte Chemie - International Edition, 2008, 47, 4388-4391.	sumb22 <td>ub1&8sub>3<</td>	ub 1& 8sub>3<
14	Paramagnetic CoS2@MoS2 core-shell composites coated by reduced graphene oxide as broadband and tunable high-performance microwave absorbers. Chemical Engineering Journal, 2019, 378, 122159.	6.6	168
15	Postsynthetic Covalent Modification of Metal–Organic Framework (MOF) Materials. Angewandte Chemie - International Edition, 2008, 47, 4635-4637.	7.2	160
16	Micropatterned Surfaces with Covalently Grafted Unsymmetrical Polyoxometalate-Hybrid Clusters Lead to Selective Cell Adhesion. Journal of the American Chemical Society, 2009, 131, 1340-1341.	6.6	153
17	Highly Efficient Extraction and Oxidative Desulfurization System Using Na ₇ H ₂ LaW ₁₀ O ₃₆ â<32 H ₂ O in [bmim]BF ₄ at Room Temperature. Chemistry - A European Journal, 2012, 18, 4775-4781.	1.7	151
18	Single Ru atoms with precise coordination on a monolayer layered double hydroxide for efficient electrooxidation catalysis. Chemical Science, 2019, 10, 378-384.	3.7	148

#	Article	IF	Citations
19	Spontaneous assembly and real-time growth of micrometre-scale tubular structures from polyoxometalate-based inorganic solids. Nature Chemistry, 2009, 1, 47-52.	6.6	145
20	Multicomponent Selfâ€Assembly of a Giant Heterometallic Polyoxotungstate Supercluster with Antitumor Activity. Angewandte Chemie - International Edition, 2021, 60, 11153-11157.	7.2	145
21	Design of Hydrophobic Polyoxometalate Hybrid Assemblies Beyond Surfactant Encapsulation. Chemistry - A European Journal, 2008, 14, 2349-2354.	1.7	141
22	Robust Polyoxometalate/Nickel Foam Composite Electrodes for Sustained Electrochemical Oxygen Evolution at High pH. Angewandte Chemie - International Edition, 2017, 56, 4941-4944.	7.2	131
23	"Wiring―redox-active polyoxometalates to carbon nanotubes using a sonication-driven periodic functionalization strategy. Energy and Environmental Science, 2016, 9, 1095-1101.	15.6	128
24	Covalently Tethered Polyoxometalate–Pyrene Hybrids for Noncovalent Sidewall Functionalization of Singleâ€Walled Carbon Nanotubes as Highâ€Performance Anode Material. Advanced Functional Materials, 2013, 23, 6100-6105.	7.8	121
25	Unravelling the Complexities of Polyoxometalates in Solution Using Mass Spectrometry:Â Protonation versus Heteroatom Inclusion. Journal of the American Chemical Society, 2008, 130, 1830-1832.	6.6	120
26	Nanoscale polyoxometalateâ€based inorganic/organic hybrids. Chemical Record, 2011, 11, 158-171.	2.9	109
27	Capture of Periodate in a {W ₁₈ O ₅₄ } Cluster Cage Yielding a Catalytically Active Polyoxometalate [H ₃ W ₁₈ O ₅₆ (IO ₆)] ^{6â^²} Embedded with Highâ€Valent Iodine. Angewandte Chemie - International Edition. 2008. 47. 4384-4387.	7.2	107
28	Sorting the Assemblies of Unsymmetrically Covalently Functionalized Mn-Anderson Polyoxometalate Clusters with Mass Spectrometry. Inorganic Chemistry, 2008, 47, 9137-9139.	1.9	101
29	Assembly of Modular Asymmetric Organicâ-'Inorganic Polyoxometalate Hybrids into Anisotropic Nanostructures. Journal of the American Chemical Society, 2010, 132, 15490-15492.	6.6	101
30	First high-nuclearity mixed-valence polyoxometalate with hierarchical interconnected Zn2+ migration channels as an advanced cathode material in aqueous zinc-ion battery. Nano Energy, 2020, 74, 104851.	8.2	101
31	Tuning and mechanistic insights of metal chalcogenide molecular catalysts for the hydrogen-evolution reaction. Nature Communications, 2019, 10, 370.	5.8	99
32	2020 Roadmap on two-dimensional nanomaterials for environmental catalysis. Chinese Chemical Letters, 2019, 30, 2065-2088.	4.8	90
33	From polyoxometalate building blocks to polymers and materials: the silver connection. Journal of Materials Chemistry, 2007, 17, 1903.	6.7	84
34	Photocatalytic selective oxidation of benzene to phenol in water over layered double hydroxide: A thermodynamic and kinetic perspective. Chemical Engineering Journal, 2020, 388, 124248.	6.6	79
35	Deep Desulfurization by Amphiphilic Lanthanideâ€Containing Polyoxometalates in Ionicâ€Liquid Emulsion Systems under Mild Conditions. Chemistry - A European Journal, 2013, 19, 709-715.	1.7	78
36	Polyoxometalate (POM)-Layered Double Hydroxides (LDH) Composite Materials: Design and Catalytic Applications. Catalysts, 2017, 7, 260.	1.6	78

#	Article	IF	CITATIONS
37	Covalent Attachment of Andersonâ€Type Polyoxometalates to Singleâ€Walled Carbon Nanotubes Gives Enhanced Performance Electrodes for Lithium Ion Batteries. Chemistry - A European Journal, 2015, 21, 6469-6474.	1.7	75
38	POMzites: A Family of Zeolitic Polyoxometalate Frameworks from a Minimal Building Block Library. Journal of the American Chemical Society, 2017, 139, 5930-5938.	6.6	72
39	Tri-lacunary polyoxometalates of Na8H[PW9O34] as heterogeneous Lewis base catalysts for Knoevenagel condensation, cyanosilylation and the synthesis of benzoxazole derivatives. Applied Catalysis A: General, 2014, 475, 140-146.	2.2	71
40	Synergistic catalysis by polyoxometalate-intercalated layered double hydroxides: oximation of aromatic aldehydes with large enhancement of selectivity. Green Chemistry, 2011, 13, 384.	4.6	67
41	Reverseâ€Vesicle Formation of Organic–Inorganic Polyoxometalateâ€Containing Hybrid Surfactants with Tunable Sizes. Chemistry - A European Journal, 2010, 16, 11320-11324.	1.7	65
42	Investigating the Formation of "Molybdenum Blues―with Gel Electrophoresis and Mass Spectrometry. Journal of the American Chemical Society, 2015, 137, 6524-6530.	6.6	60
43	Connecting carbon nanotubes to polyoxometalate clusters for engineering high-performance anode materials. Physical Chemistry Chemical Physics, 2014, 16, 19668-19673.	1.3	59
44	Classical Keggin Intercalated into Layered Double Hydroxides: Facile Preparation and Catalytic Efficiency in Knoevenagel Condensation Reactions. Chemistry - A European Journal, 2015, 21, 14862-14870.	1.7	58
45	Pyreneâ€Andersonâ€Modified CNTs as Anode Materials for Lithiumâ€Ion Batteries. Chemistry - A European Journal, 2015, 21, 18799-18804.	1.7	57
46	Polyoxometalateâ€Based Bottomâ€Up Fabrication of Graphene Quantum Dot/Manganese Vanadate Composites as Lithium Ion Battery Anodes. Chemistry - A European Journal, 2017, 23, 16637-16643.	1.7	56
47	Engineering high-performance polyoxometalate/PANI/MWNTs nanocomposite anode materials for lithium ion batteries. Chemical Engineering Journal, 2017, 326, 273-280.	6.6	53
48	Highly Selective and Efficient Removal of Cr(VI) and Cu(II) by the Chromotropic Acid-Intercalated Zn–Al Layered Double Hydroxides. Industrial & Engineering Chemistry Research, 2013, 52, 4436-4442.	1.8	52
49	Dawsonâ€Type Polyoxomolybdate Anions (P ₂ Mo ₁₈ O ₆₂ ^{6â^²}) Captured by Ionic Liquid on Graphene Oxide as Highâ€Capacity Anode Material for Lithiumâ€Ion Batteries. Chemistry - A European Journal, 2017, 23. 8729-8735.	1.7	52
50	Engineering Active Ni Sites in Ternary Layered Double Hydroxide Nanosheets for a Highly Selective Photoreduction of CO ₂ to CH ₄ under Irradiation above 500 nm. Industrial & Supering Chemistry Research, 2020, 59, 3008-3015.	1.8	52
51	Fine Tuning the Heterostructured Interfaces by Topological Transformation of Layered Double Hydroxide Nanosheets. Industrial & Engineering Chemistry Research, 2018, 57, 10411-10420.	1.8	51
52	Facile Preparation of Ultrathin Co ₃ O ₄ /Nanocarbon Composites with Greatly Improved Surface Activity as a Highly Efficient Oxygen Evolution Reaction Catalyst. Chemistry - A European Journal, 2017, 23, 4010-4016.	1.7	49
53	An efficient heterogeneous catalyst based on highly dispersed Na7H2LaW10O36·32H2O nanoparticles on mesoporous silica for deep desulfurization. Applied Catalysis A: General, 2013, 466, 307-314.	2.2	47
54	Highly Selective Photoreduction of CO ₂ with Suppressing H ₂ Evolution over Monolayer Layered Double Hydroxide under Irradiation above 600â€nm. Angewandte Chemie, 2019, 131, 11986-11993.	1.6	47

#	Article	IF	CITATIONS
55	600 nm Irradiation-Induced Efficient Photocatalytic CO ₂ Reduction by Ultrathin Layered Double Hydroxide Nanosheets. Industrial & Engineering Chemistry Research, 2020, 59, 5848-5857.	1.8	47
56	600 nm-driven photoreduction of CO2 through the topological transformation of layered double hydroxides nanosheets. Applied Catalysis B: Environmental, 2020, 270, 118884.	10.8	46
57	Realization of a "Lockable―Molecular Switch via pH- and Redox-Modulated Cyclization. Journal of the American Chemical Society, 2008, 130, 13059-13065.	6.6	45
58	Fabrication and Electrochemical Performance of Polyoxometalate-Based Three-Dimensional Metal Organic Frameworks Containing Carbene Nanocages. ACS Applied Materials & Diterfaces, 2018, 10, 16660-16665.	4.0	45
59	Acetalization of aldehydes and ketones over H ₄ [SiW ₁₂ O ₄₀] and H ₄ [SiW ₁₂ O ₄₀]/SiO ₂ . Catalysis Science and Technology, 2014, 4, 2618-2625.	2.1	44
60	Polyoxometalateâ€Intercalated Layered Double Hydroxides as Efficient and Recyclable Bifunctional Catalysts for Cascade Reactions. ChemCatChem, 2016, 8, 929-937.	1.8	43
61	Interface Engineering of High-Energy Faceted Co ₃ O ₄ /ZnO Heterostructured Catalysts Derived from Layered Double Hydroxide Nanosheets. Industrial & Derived From Layered Double Hydroxide Nanosheets. Industrial & Derived From Chemistry Research, 2018, 57, 5259-5267.	1.8	42
62	Modular Polyoxometalate‣ayered Double Hydroxide Composites as Efficient Oxidative Catalysts. Chemistry - A European Journal, 2015, 21, 10812-10820.	1.7	41
63	Hybrid polyoxometalate clusters with appended aromatic platforms. CrystEngComm, 2010, 12, 109-115.	1.3	40
64	Layerâ€byâ€Layer Assembly of Na ₉ [EuW ₁₀ O ₃₆]â<32 H ₂ Layered Double Hydroxides Leading to Ordered Ultraâ€Thin Films: Cooperative Effect and Orientation Effect. Chemistry - A European Journal, 2011, 17, 10365-10371.	sub>O and 1.7	40
65	The application of spontaneous flocculation for the preparation of lanthanide-containing polyoxometalates intercalated layered double hydroxides: highly efficient heterogeneous catalysts for cyanosilylation. Applied Catalysis A: General, 2014, 487, 172-180.	2.2	40
66	Rational Design of a Polyoxometalate Intercalated Layered Double Hydroxide: Highly Efficient Catalytic Epoxidation of Allylic Alcohols under Mild and Solventâ€Free Conditions. Chemistry - A European Journal, 2017, 23, 1069-1077.	1.7	40
67	500 nm induced tunable syngas synthesis from CO ₂ photoreduction by controlling heterojunction concentration. Chemical Communications, 2020, 56, 5354-5357.	2.2	40
68	Polyoxometalates-based heterogeneous catalysts in acid catalysis. Science China Chemistry, 2021, 64, 1117-1130.	4.2	40
69	Electrospun Self-Supporting Nanocomposite Films of Na ₉ [EuW ₁₀ O ₃₆]·32H ₂ O/PAN as pH-Modulated Luminescent Switch. Industrial & Sample Engineering Chemistry Research, 2013, 52, 2598-2603.	1.8	39
70	Reversible Lightâ€Driven Polymerization of Polyoxometalate Tethered with Coumarin Molecules. Chemistry - A European Journal, 2014, 20, 1500-1504.	1.7	39
71	Immobilization of LaW ₁₀ onto Ionicâ€Liquidâ€Modified Mesoporous Silica: Deep Desulfurization with Zeroâ€Order Reaction Kinetics. ChemPlusChem, 2014, 79, 304-309.	1.3	38
72	Step-by-step covalent modification of Cr-templated Anderson-type polyoxometalates. Dalton Transactions, 2014, 43, 8587-8590.	1.6	38

#	Article	IF	CITATIONS
73	Layered double hydroxide anchored ionic liquids as amphiphilic heterogeneous catalysts for the Knoevenagel condensation reaction. Dalton Transactions, 2018, 47, 3059-3067.	1.6	38
74	Defect engineering of NiCo-layered double hydroxide hollow nanocages for highly selective photoreduction of CO ₂ to CH ₄ with suppressing H ₂ evolution. Inorganic Chemistry Frontiers, 2021, 8, 996-1004.	3.0	38
75	Developing two-dimensional solid superacids with enhanced mass transport, extremely high acid strength and superior catalytic performance. Chemical Science, 2019, 10, 5875-5883.	3.7	37
76	Engineering polyoxometalate-intercalated layered double hydroxides for catalytic applications. Dalton Transactions, 2020, 49, 3934-3941.	1.6	37
77	Electrical Network of Singleâ€Crystalline Metal Oxide Nanoclusters Wired by Ï€â€Molecules. Angewandte Chemie - International Edition, 2014, 53, 11228-11231.	7.2	35
78	Programmable Surface Architectures Derived from Hybrid Polyoxometalate-Based Clusters. Journal of Physical Chemistry C, 2011, 115, 4446-4455.	1.5	33
79	Directional Self-Assembly of Exfoliated Layered Europium Hydroxide Nanosheets and Na9EuW10O36·32H2O for Application in Desulfurization. European Journal of Inorganic Chemistry, 2014, 2014, 2779-2786.	1.0	33
80	Tunable Syngas Synthesis from Photocatalytic CO2 Reduction Under Visible-Light Irradiation by Interfacial Engineering. Transactions of Tianjin University, 2020, 26, 352-361.	3. 3	33
81	Efficient concurrent removal of sulfur and nitrogen contents from complex oil mixtures by using polyoxometalate-based composite materials. Inorganic Chemistry Frontiers, 2016, 3, 1007-1013.	3.0	32
82	Integrated Synthesis of Gold Nanoparticles Coated with Polyoxometalate Clusters. Inorganic Chemistry, 2019, 58, 4110-4116.	1.9	31
83	Discovery of an imidazo-phenanthridine synthon produced in a †five-step one-pot reaction†leading to a new family of heterocycles with novel physical properties. Chemical Communications, 2006, , 1194.	2.2	30
84	Polyoxometalate-based organic–inorganic hybrids for stabilization and optical switching of the liquid crystal blue phase. Journal of Materials Chemistry C, 2015, 3, 4179-4187.	2.7	30
85	Modular Polyoxometalate–Layered Double Hydroxides as Efficient Heterogeneous Sulfoxidation and Epoxidation Catalysts. ChemCatChem, 2018, 10, 188-197.	1.8	30
86	Polyoxometalates Hosted in Layered Double Hydroxides: Highly Enhanced Catalytic Activity and Selectivity in Sulfoxidation of Sulfides. Industrial & Engineering Chemistry Research, 2015, 54, 9133-9141.	1.8	29
87	Polyoxometalateâ€Surfactant Assemblies: Responsiveness to Orthogonal Stimuli. Angewandte Chemie - International Edition, 2022, 61, .	7.2	29
88	Recent Progress on Nanostructured Layered Double Hydroxides for Visibleâ€Lightâ€Induced Photoreduction of CO ₂ . Chemistry - an Asian Journal, 2020, 15, 3380-3389.	1.7	28
89	Threeâ€Dimensional Carbon Framework Anchored Polyoxometalate as a Highâ€Performance Anode for Lithiumâ€Ion Batteries. Chemistry - A European Journal, 2020, 26, 5257-5263.	1.7	28
90	Superâ€6table Mineralization of Ni ²⁺ lons from Wastewater using CaFe Layered Double Hydroxide. Advanced Functional Materials, 2022, 32, 2106645.	7.8	28

#	Article	lF	Citations
91	Highly efficient and selective oxidation of various substrates under mild conditions using a lanthanum-containing polyoxometalate as catalyst. Applied Catalysis A: General, 2013, 453, 188-194.	2.2	25
92	Step-by-Step Assembly of 2D Confined Chiral Space Endowing Achiral Clusters with Asymmetric Catalytic Activity for Epoxidation of Allylic Alcohols. ACS Applied Materials & Epoxidation of Allylic Alcohols & Epoxida	4.0	24
93	Highly selective photo-hydroxylation of phenol using ultrathin NiFe-layered double hydroxide nanosheets under visible-light up to 550 nm. Green Chemistry, 2020, 22, 8604-8613.	4.6	24
94	Well-Dispersed H ₃ PW ₁₂ O ₄₀ /H ₄ SiW ₁₂ O ₄₀ Nanoparticles on Mesoporous Polymer for Highly Efficient Acid-Catalyzed Reactions. Industrial & mp; Engineering Chemistry Research, 2015, 54, 11534-11542.	1.8	23
95	Selfâ€Organization of Ionic Liquidâ€Modified Organosilica Hollow Nanospheres and Heteropolyacids: Efficient Preparation of 5â€HMF Under Mild Conditions. ChemCatChem, 2019, 11, 2526-2536.	1.8	23
96	Highly selective oximation of aldehydes by reusable heterogeneous sandwich-type polyoxometalate catalyst. Dalton Transactions, 2012, 41, 9855.	1.6	22
97	Modular development of metal oxide/carbon composites for electrochemical energy conversion and storage. Journal of Materials Chemistry A, 2019, 7, 13096-13102.	5.2	22
98	Photocatalytic syngas synthesis from CO2 and H2O using ultrafine CeO2-decorated layered double hydroxide nanosheets under visible-light up to 600 nm. Frontiers of Chemical Science and Engineering, 2021, 15, 99-108.	2.3	22
99	Atomically dispersed Rh-doped NiFe layered double hydroxides: precise location of Rh and promoting hydrazine electrooxidation properties. Nanoscale, 2021, 13, 1869-1874.	2.8	22
100	Advanced Anode Materials for Sodium-Ion Batteries: Confining Polyoxometalates in Flexible Metal–Organic Frameworks by the "Breathing Effectâ€, ACS Applied Materials & Diterfaces, 2022, 14, 22186-22196.	4.0	22
101	Covalently grafting nonmesogenic moieties onto polyoxometalate for fabrication of thermotropic liquid-crystalline nanomaterials. Journal of Materials Chemistry C, 2015, 3, 15-18.	2.7	21
102	Covalent Immobilization of Polyoxotungstate on Alumina and Its Catalytic Generation of Sulfoxides. Chemistry - A European Journal, 2016, 22, 11232-11238.	1.7	21
103	A multicomponent assembly approach for the design of deep desulfurization heterogeneous catalysts. Dalton Transactions, 2016, 45, 19511-19518.	1.6	21
104	Synergistic interaction of anions and cations in preparation of VPO catalysts promoted by polyoxometalate-ionic liquids. Applied Catalysis A: General, 2019, 582, 117106.	2.2	21
105	Highly Selective and Efficient Lewis Acid–Base Catalysts Based on Lanthanide ontaining Polyoxometalates for Oximation of Aldehydes and Ketones. European Journal of Inorganic Chemistry, 2013, 2013, 1659-1663.	1.0	20
106	Organic–inorganic hybrids formed by polyoxometalate-based surfactants with cationic polyelectrolytes and block copolymers. Journal of Materials Chemistry C, 2015, 3, 2450-2454.	2.7	20
107	Reversible photodimerization of coumarin-modified Wells–Dawson anions. Journal of Materials Chemistry C, 2015, 3, 4388-4393.	2.7	20
108	Seeds embedded epitaxial growth strategy for PAN@LDH membrane with Mortise-Tenon structure as efficient adsorbent for particulate matter capture. Applied Catalysis B: Environmental, 2020, 263, 118312.	10.8	20

#	Article	lF	Citations
109	Superhydrophobic Polyoxometalate/Calixarene Inorganic-Organic Hybrid Materials with Highly Efficient Desulfurization Ability. European Journal of Inorganic Chemistry, 2014, 2014, 812-817.	1.0	18
110	Digital Control of Multistep Hydrothermal Synthesis by Using 3D Printed Reactionware for the Synthesis of Metal–Organic Frameworks. Angewandte Chemie - International Edition, 2018, 57, 16716-16720.	7.2	18
111	Fabrication of redox-active polyoxometalate-based ionic crystals onto single-walled carbon nanotubes as high-performance anode materials for lithium-ion batteries. Inorganic Chemistry Frontiers, 2020, 7, 1420-1427.	3.0	18
112	Confinement of PMo ₁₂ in hollow SiO ₂ -PMo ₁₂ @rGO nanospheres for high-performance lithium storage. Inorganic Chemistry Frontiers, 2021, 8, 352-360.	3.0	18
113	Facile Immobilization of a Lewis Acid Polyoxometalate onto Layered Double Hydroxides for Highly Efficient Nâ€Oxidation of Pyridineâ€Based Derivatives and Denitrogenation. ChemCatChem, 2015, 7, 3903-3910.	1.8	17
114	1-D Chain Tungstotellurate Hybrids Constructed from Organic-Ligand-Connecting Iron–Lanthanide Heterometal Encapsulated Tetrameric Polyoxotungstate Units. Inorganic Chemistry, 2019, 58, 9706-9712.	1.9	17
115	Devisable POM/Ni Foam Composite: Precisely Control Synthesis toward Enhanced Hydrogen Evolution Reaction at High pH. Chemistry - A European Journal, 2019, 25, 15548-15554.	1.7	17
116	<i>In Situ</i> Construction of MIL-100@NiMn-LDH Hierarchical Architectures for Highly Selective Photoreduction of CO ₂ to CH ₄ . ACS Applied Materials & Diterfaces, 2022, 14, 16369-16378.	4.0	17
117	Supramolecular self-assembly and anion-dependence of copper(II) complexes with cationic dihydro-imidazo phenanthridinium (DIP)-containing ligands. CrystEngComm, 2008, 10, 1243.	1.3	16
118	Intercalation Effect in NiAl-layered Double Hydroxide Nanosheets for CO2 Reduction Under Visible Light. Chemical Research in Chinese Universities, 2020, 36, 127-133.	1.3	16
119	Colorâ€Tunable Luminescent Films Based on the Hybrid Assemblies of [EuW ₁₀ 0 ₃₆] ^{9–} , Bis(<i>N</i> êmethylacridinium) Nitrate, and Layered Double Hydroxide. European Journal of Inorganic Chemistry, 2013, 2013, 1475-1480.	1.0	15
120	Polyoxometalate-based supramolecular hydrogels constructed through host–guest interactions. Inorganic Chemistry Frontiers, 2017, 4, 789-794.	3.0	15
121	Recent progress on the frontiers of polyoxometalates structures and applications. Science China Chemistry, 2019, 62, 159-161.	4.2	15
122	Mesoporous Polymer Loading Heteropolyacid Catalysts: One-Step Strategy To Manufacture High Value-Added Cellulose Acetate Propionate. ACS Sustainable Chemistry and Engineering, 2019, 7, 4975-4982.	3.2	14
123	Heteropolyacids and sulfonic acid-bifunctionalized organosilica spheres for efficient manufacture of cellulose acetate propionate with high viscosity. Cellulose, 2020, 27, 2437-2453.	2.4	14
124	Topological Transformation of Mgâ€Containing Layered Double Hydroxide Nanosheets for Efficient Photodriven CH ₄ Coupling. Chemistry - A European Journal, 2021, 27, 13211-13220.	1.7	14
125	Adsorption of Human Serum Albumin (HSA) by SWNTs/Py-PW ₁₁ Nanocomposite. Industrial & Lamp; Engineering Chemistry Research, 2014, 53, 11566-11570.	1.8	13
126	Visible-Light-Induced Hydrogenation of Câ•€ Bonds by Hydrazine over Ultrathin Layered Double Hydroxide Nanosheets. Industrial & Engineering Chemistry Research, 2020, 59, 14315-14322.	1.8	13

#	Article	IF	CITATIONS
127	Electronic Structure Reconfiguration of Self-Supported Polyoxometalate-Based Lithium-Ion Battery Anodes for Efficient Lithium Storage. ACS Applied Materials & Samp; Interfaces, 2022, 14, 1169-1176.	4.0	13
128	Tripodal bis(imidazole)-based ligands and their chelation to copper(ii). CrystEngComm, 2011, 13, 7299.	1.3	12
129	Precise Control of the Oriented Layered Double Hydroxide Nanosheets Growth on Graphene Oxides Leading to Efficient Catalysts for Cascade Reactions. ChemCatChem, 2019, 11, 5466-5474.	1.8	12
130	3D Carbon Foam Supported Edgeâ€Rich Nâ€Doped MoS ₂ Nanoflakes for Enhanced Electrocatalytic Hydrogen Evolution. Chemistry - A European Journal, 2020, 26, 4150-4156.	1.7	12
131	Hierarchical trace copper incorporation activated cobalt layered double hydroxide as a highly selective methanol conversion electrocatalyst to realize energy-matched photovoltaic-electrocatalytic formate and hydrogen co-production. Journal of Materials Chemistry A. 2022, 10, 19649-19661.	5. 2	12
132	Self-Assembly in Polyoxometalate and Metal Coordination-Based Systems: Synthetic Approaches and Developments. Inorganics, 2018, 6, 71.	1,2	11
133	Direct molecular confinement in layered double hydroxides: from fundamental to advanced photo-luminescent hybrid materials. Inorganic Chemistry Frontiers, 2021, 8, 1324-1333.	3.0	11
134	Stabilization and electro-optical switching of liquid crystal blue phases using unpolymerized and polymerized polyoxometalate-based nanoparticles. Molecular Crystals and Liquid Crystals, 2016, 634, 12-23.	0.4	10
135	Enhanced Macroanion Recognition of Superchaotropic Keggin Clusters Achieved by Synergy of Anion–π and Anion–Cation Interactions. Chemistry - A European Journal, 2020, 26, 16802-16810.	1.7	10
136	Fiber Templated Epitaxially Grown Composite Membranes: From Thermal Insulation to Infrared Stealth. ACS Applied Materials & Samp; Interfaces, 2022, 14, 27214-27221.	4.0	10
137	OD to 1D Switching of Hybrid Polyoxometalate Assemblies at the Nanoscale by Using Molecular Control. ChemPlusChem, 2013, 78, 1226-1229.	1.3	9
138	Modulation of Selfâ€Separating Molecular Catalysts for Highly Efficient Biomass Transformations. Chemistry - A European Journal, 2020, 26, 11900-11908.	1.7	9
139	Insight into the Structural Variation and Sodium Storage Behavior of Polyoxometalates Encapsulated within Singleâ€Walled Carbon Nanotubes. Chemistry - A European Journal, 2022, 28, .	1.7	9
140	Robust and Environmentally Benign Solid Acid Intercalation Catalysts for the Aminolysis of Epoxides. ChemCatChem, 2018, 10, 4699-4706.	1.8	8
141	Synchronous Electrocatalytic Design of Architectural and Electronic Structure Based on Bifunctional LDHâ€Co ₃ O ₄ /NF toward Water Splitting. Chemistry - A European Journal, 2021, 27, 3367-3373.	1.7	8
142	Structural Phase Transitions of a Molecular Metal Oxide. Angewandte Chemie - International Edition, 2020, 59, 22446-22450.	7.2	7
143	Green light (550 nm) driven tunable syngas synthesis from CO ₂ photoreduction using heterostructured layered double hydroxide/TiC photocatalysts. Catalysis Science and Technology, 2021, 11, 7091-7097.	2.1	7
144	Self-Organization of Anderson-Based Amphiphiles. European Journal of Inorganic Chemistry, 2014, 2014, 3401-3405.	1.0	6

#	Article	IF	CITATIONS
145	Core–shell Assembly of Heteropolyacids and Polymer: Efficient Preparation of Cellulose Acetate Propionate and Its Processed Products. ACS Sustainable Chemistry and Engineering, 2021, 9, 5179-5186.	3.2	5
146	lonic Liquids Achieve the Exfoliation of Ultrathin Two-Dimensional VOPO ₄ ·2H ₂ O Crystalline Nanosheets: Implications on Energy Storage and Catalysis. ACS Applied Nano Materials, 2021, 4, 2503-2514.	2.4	5
147	Doubleâ€Shelled Hollow SiO ₂ @Nâ€C Nanofiber Boosts the Lithium Storage Performance of [PMo ₁₂ O ₄₀] ^{3â^'} . Chemistry - A European Journal, 2021, 27, 13367-13375.	1.7	5
148	Remote Synthesis of Layered Double Hydroxide Nanosheets Through the Automatic Chemical Robot. Chemical Research in Chinese Universities, 2022, 38, 217-222.	1.3	5
149	Electrodeposition of Defectâ€Rich Ternary NiCoFe Layered Double Hydroxides: Fine Modulation of Co ³⁺ for Highly Efficient Oxygen Evolution Reaction. Chemistry - A European Journal, 2022, 28, .	1.7	5
150	Polyoxometalateâ€Surfactant Assemblies: Responsiveness to Orthogonal Stimuli. Angewandte Chemie, 2022, 134, .	1.6	4
151	(Pyrenetetrasulfonate/ZnS) <i></i> Ordered Ultrathin Films with ZnAl Layered Double Hydroxide as Precursor and Ethanolâ€Sensing Properties. European Journal of Inorganic Chemistry, 2013, 2013, 3348-3351.	1.0	3
152	Exploring the solvent mediated assembly and redox activity of a POM–organic hybrid [Na(SO3)2(PhPO3)4MoV4MoVI14O49]5â°. New Journal of Chemistry, 2016, 40, 8488-8492.	1.4	3
153	Oxygen Adsorption-Induced Morphological Evolution of $H\tilde{A}_{\mathbf{g}}^{\mathbf{g}}$ Iron Carbide at High Oxygen Chemical Potentials. Journal of Physical Chemistry C, 2021, 125, 3055-3065.	1.5	3
154	Reaction-Controlled Phase-Transfer Process of Polyoxometalate-Based Catalyst for Cellulose Esterification: A Molecular Dynamics Study. Journal of Physical Chemistry C, 2021, 125, 25478-25487.	1.5	3
155	Mechanistic insights of molecular metal polyselenides for catalytic hydrogen generation. Chemical Communications, 2022, 58, 6906-6909.	2.2	3
156	Covalently tethering disulfonic acid moieties onto polyoxometalate boosts acid strength and catalytic performance for hydroxyalkylation/alkylation reaction. Science China Chemistry, 2022, 65, 699-709.	4.2	2
157	Three {Bi ₂ W ₂₁ } Tungstobismuthate Clusters Linked by Acetateâ€Stabilized Ln Bridges. European Journal of Inorganic Chemistry, 2019, 2019, 534-541.	1.0	1
158	Comparative Study of the Biphasic Behavior of Cyanex301 and Its Two Analogs by Molecular Dynamics Simulations. Advanced Theory and Simulations, 2020, 3, 1900242.	1.3	1
159	Controllable Modulation of Defects for Layered Double Hydroxide Nanosheets by Altering Intercalation Anions for Efficient Electrooxidation Catalysis. Chemistry - an Asian Journal, 2021, 16, 3993-3998.	1.7	1
160	C2 weakens the turnover frequency during the melting of Fe _{<i>x</i>} C _{<i>y</i>} : insights from reactive MD simulations. New Journal of Chemistry, 2021, 46, 282-293.	1.4	1
161	Inside Cover: Supramolecular Metal Oxides: Programmed Hierarchical Assembly of a Protein-Sized 21 kDa [(C16H36N)19{H2NC(CH2O)3P2V3W15O59}4]5â^' Polyoxometalate Assembly (Angew. Chem. In	nt. Ed7):2Tj ETI	Qq o 1 0.784
162	InnenrÃ1⁄4cktitelbild: Electrical Network of Single-Crystalline Metal Oxide Nanoclusters Wired by Ï€-Molecules (Angew. Chem. 42/2014). Angewandte Chemie, 2014, 126, 11565-11565.	1.6	0

Yu-Fei Song

#	Article	IF	CITATIONS
163	Polyoxometalate-Based Photo-Sensitive Functional Hybrid Materials. Structure and Bonding, 2017, , 49-63.	1.0	О
164	Synthesis, structural characterization and fluorescence enhancement of chromophore-modified polyoxometalates. Acta Crystallographica Section C, Structural Chemistry, 2018, 74, 1260-1266.	0.2	0
165	Mixed Oxidation States of Polyoxometalates: From Syntheses to Applications. , 2019, , 518-518.		0
166	Structural Phase Transitions of a Molecular Metal Oxide. Angewandte Chemie, 2020, 132, 22632-22636.	1.6	0