
Muxina Konarova

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7807249/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Advances in liquefaction for the production of hydrocarbon biofuels. , 2022, , 127-176.		5
2	Fischer-Tropsch synthesis to hydrocarbon biofuels: Present status and challenges involved. , 2022, , 77-96.		5
3	Transforming red mud into an efficient Acid-Base catalyst by hybridization with mesoporous ZSM-5 for Co-pyrolysis of biomass and plastics. Chemical Engineering Journal, 2022, 430, 132965.	6.6	24
4	Highly adhesive and disposable inorganic barrier films: made from 2D silicate nanosheets and water. Journal of Materials Chemistry A, 2022, 10, 1956-1964.	5.2	1
5	Tailoring ZSM-5 zeolite porosity and acidity for efficient conversion of municipal solid waste to fuel. Microporous and Mesoporous Materials, 2022, 330, 111579.	2.2	4
6	Nanosphere Lithography: A Versatile Approach to Develop Transparent Conductive Films for Optoelectronic Applications. Advanced Materials, 2022, 34, e2103842.	11.1	45
7	Zeolite shape selectivity impact on LDPE and PP catalytic pyrolysis products and coke nature. Sustainable Energy and Fuels, 2022, 6, 1587-1602.	2.5	15
8	Metal-incorporated mesoporous oxides: Synthesis and applications. Journal of Hazardous Materials, 2021, 401, 123348.	6.5	19
9	Conversion of agricultural waste into stable biocrude using spinel oxide catalysts. Journal of Hazardous Materials, 2021, 402, 123539.	6.5	9
10	Bismuth based photoelectrodes for solar water splitting. Journal of Energy Chemistry, 2021, 61, 517-530.	7.1	47
11	Catalyst–Electrolyte Interactions in Aqueous Reline Solutions for Highly Selective Electrochemical CO ₂ Reduction. ChemSusChem, 2020, 13, 304-311.	3.6	29
12	Fabricating highly efficient heterostructured CuBi ₂ O ₄ photocathodes for unbiased water splitting. Journal of Materials Chemistry A, 2020, 8, 2498-2504.	5.2	57
13	Hybridization of ZSMâ€5 with Spinel Oxides for Biomass Vapour Upgrading. ChemCatChem, 2020, 12, 1403-1412.	1.8	11
14	Hydrocarbon hydrogen carriers for catalytic transfer hydrogenation of guaiacol. International Journal of Hydrogen Energy, 2020, 45, 27381-27391.	3.8	9
15	Syngas to higher alcohols synthesis over 3D printed KMoCo/ZSM5 monolith. Chemical Engineering Journal Advances, 2020, 3, 100024.	2.4	6
16	The catalytic activity of KMoCo carbon spheres for higher alcohols synthesis from syngas. Applied Catalysis A: General, 2020, 605, 117803.	2.2	6
17	Tailored Nanoarchitecturing of Microporous ZIF-8 to Hierarchically Porous Double-Shell Carbons and Their Intrinsic Electrochemical Property. ACS Applied Materials & Interfaces, 2020, 12, 34065-34073.	4.0	101
18	Beyond Hydrogen Evolution: Solar-Driven, Water-Donating Transfer Hydrogenation over Platinum/Carbon Nitride. ACS Catalysis, 2020, 10, 9227-9235.	5.5	68

MUXINA KONAROVA

#	Article	IF	CITATIONS
19	Molten Salt Synthesis of Atomic Heterogeneous Catalysts: Old Chemistry for Advanced Materials. European Journal of Inorganic Chemistry, 2020, 2020, 2942-2949.	1.0	26
20	Functional Mesoporous Silica Nanomaterials for Catalysis and Environmental Applications. Bulletin of the Chemical Society of Japan, 2020, 93, 1459-1496.	2.0	114
21	Catalyst–Electrolyte Interactions in Aqueous Reline Solutions for Highly Selective Electrochemical CO 2 Reduction. ChemSusChem, 2020, 13, 282-282.	3.6	2
22	Self-sustaining smouldering combustion of waste: A review on applications, key parameters and potential resource recovery. Fuel Processing Technology, 2020, 205, 106425.	3.7	56
23	Magnetic nanocellulose: A potential material for removal of dye from water. Journal of Hazardous Materials, 2020, 394, 122571.	6.5	75
24	Enabling compact GTL by 3D-printing of structured catalysts. Results in Engineering, 2020, 6, 100127.	2.2	9
25	A review on advanced catalytic co-pyrolysis of biomass and hydrogen-rich feedstock: Insights into synergistic effect, catalyst development and reaction mechanism. Bioresource Technology, 2020, 310, 123457.	4.8	130
26	Red-mud based porous nanocatalysts for valorisation of municipal solid waste. Journal of Hazardous Materials, 2020, 396, 122711.	6.5	35
27	Toward Excellence of Transition Metalâ€Based Catalysts for CO ₂ Electrochemical Reduction: An Overview of Strategies and Rationales. Small Methods, 2020, 4, 2000033.	4.6	60
28	Nanostructured NiMoS2/Carbon Catalysts for Syngas Conversion to Higher Alcohols. Journal of Nanoscience and Nanotechnology, 2020, 20, 5260-5266.	0.9	0
29	Recent advances in liquefaction technologies for production of liquid hydrocarbon fuels from biomass and carbonaceous wastes. Renewable and Sustainable Energy Reviews, 2019, 115, 109400.	8.2	66
30	Role of promoters and catalyst supports for selective synthesis of higher alcohols over molybdenum carbides. Canadian Journal of Chemical Engineering, 2019, 97, 2077-2085.	0.9	2
31	Highly active and robust Ni–MoS ₂ supported on mesoporous carbon: a nanocatalyst for hydrodeoxygenation reactions. RSC Advances, 2019, 9, 17194-17202.	1.7	21
32	Understanding the Roles of Oxygen Vacancies in Hematiteâ€Based Photoelectrochemical Processes. Angewandte Chemie - International Edition, 2019, 58, 1030-1034.	7.2	268
33	Understanding the Roles of Oxygen Vacancies in Hematiteâ€Based Photoelectrochemical Processes. Angewandte Chemie, 2019, 131, 1042-1046.	1.6	89
34	TiN u Heterogeneous Nanocatalysts for Effective Depolymerisation of Oxidised Lignin. ChemistrySelect, 2018, 3, 3379-3385.	0.7	14
35	Process development status of fast pyrolysis technologies for the manufacture of renewable transport fuels from biomass. Renewable and Sustainable Energy Reviews, 2018, 90, 292-315.	8.2	208
36	Enabling Process Intensification by 3 D Printing of Catalytic Structures. ChemCatChem, 2017, 9, 4132-4138.	1.8	39

MUXINA KONAROVA

#	Article	IF	CITATIONS
37	High yield conversion of cellulosic biomass into 5-hydroxymethylfurfural and a study of the reaction kinetics of cellulose to HMF conversion in a biphasic system. Catalysis Science and Technology, 2016, 6, 6257-6266.	2.1	74
38	C–H bond cyanation of arenes using N,N-dimethylformamide and NH ₄ HCO ₃ as a CN source over a hydroxyapatite supported copper catalyst. Catalysis Science and Technology, 2016, 6, 8055-8062.	2.1	15
39	Direct Production of 5â€Hydroxymethylfurfural via Catalytic Conversion of Simple and Complex Sugars over Phosphated TiO ₂ . ChemSusChem, 2015, 8, 2907-2916.	3.6	85
40	Guaiacol hydrodeoxygenation reaction catalyzed by highly dispersed, single layered MoS ₂ /C. Catalysis Science and Technology, 2015, 5, 4422-4432.	2.1	67
41	Nano―and Microscale Engineering of the Molybdenum Disulfideâ€Based Catalysts for Syngas to Ethanol Conversion. ChemCatChem, 2014, 6, 2394-2402.	1.8	33
42	Effects of nano-confinement on the hydrogen desorption properties of MgH2. Nano Energy, 2013, 2, 98-104.	8.2	120
43	Synthesis and Hydrogen Storage Properties of Magnesium Nanoparticles with Core/Shell Structure. Materials Science Forum, 2012, 736, 120-126.	0.3	1
44	Porous MgH2/C composite with fast hydrogen storage kinetics. International Journal of Hydrogen Energy, 2012, 37, 8370-8378.	3.8	30
45	Synthesis of carbon-coated LiFePO4 nanoparticles with high rate performance in lithium secondary batteries. Journal of Power Sources, 2010, 195, 3661-3667.	4.0	156
46	Preparation of carbon coated LiFePO4 by a combination of spray pyrolysis with planetary ball-milling followed by heat treatment and their electrochemical properties. Powder Technology, 2009, 191, 111-116.	2.1	88
47	Physical and electrochemical properties of LiFePO4 nanoparticles synthesized by a combination of spray pyrolysis with wet ball-milling. Journal of Power Sources, 2009, 194, 1029-1035.	4.0	77
48	Synthesis of spherical LiMn2O4 microparticles by a combination of spray pyrolysis and drying method. Powder Technology, 2008, 181, 228-236.	2.1	60
49	Preparation of LiFePO4/C composite powders by ultrasonic spray pyrolysis followed by heat treatment and their electrochemical properties. Materials Research Bulletin, 2008, 43, 3305-3317.	2.7	64
50	Role of Catalyst Support's Physicochemical Properties on Catalytic Transfer Hydrogenation over Palladium Catalysts. ChemCatChem, 0, , .	1.8	2