Muxina Konarova

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7807249/publications.pdf

Version: 2024-02-01

50	2,548	27	46
papers	citations	h-index	g-index
53	53	53	3137 citing authors
all docs	docs citations	times ranked	

#	Article	IF	CITATIONS
1	Understanding the Roles of Oxygen Vacancies in Hematiteâ€Based Photoelectrochemical Processes. Angewandte Chemie - International Edition, 2019, 58, 1030-1034.	7.2	268
2	Process development status of fast pyrolysis technologies for the manufacture of renewable transport fuels from biomass. Renewable and Sustainable Energy Reviews, 2018, 90, 292-315.	8.2	208
3	Synthesis of carbon-coated LiFePO4 nanoparticles with high rate performance in lithium secondary batteries. Journal of Power Sources, 2010, 195, 3661-3667.	4.0	156
4	A review on advanced catalytic co-pyrolysis of biomass and hydrogen-rich feedstock: Insights into synergistic effect, catalyst development and reaction mechanism. Bioresource Technology, 2020, 310, 123457.	4.8	130
5	Effects of nano-confinement on the hydrogen desorption properties of MgH2. Nano Energy, 2013, 2, 98-104.	8.2	120
6	Functional Mesoporous Silica Nanomaterials for Catalysis and Environmental Applications. Bulletin of the Chemical Society of Japan, 2020, 93, 1459-1496.	2.0	114
7	Tailored Nanoarchitecturing of Microporous ZIF-8 to Hierarchically Porous Double-Shell Carbons and Their Intrinsic Electrochemical Property. ACS Applied Materials & Electrochemical Property. ACS Applied Materials & Electrochemical Property. ACS Applied Materials & Electrochemical Property. 34065-34073.	4.0	101
8	Understanding the Roles of Oxygen Vacancies in Hematiteâ€Based Photoelectrochemical Processes. Angewandte Chemie, 2019, 131, 1042-1046.	1.6	89
9	Preparation of carbon coated LiFePO4 by a combination of spray pyrolysis with planetary ball-milling followed by heat treatment and their electrochemical properties. Powder Technology, 2009, 191, 111-116.	2.1	88
10	Direct Production of 5â€Hydroxymethylfurfural via Catalytic Conversion of Simple and Complex Sugars over Phosphated TiO ₂ . ChemSusChem, 2015, 8, 2907-2916.	3.6	85
11	Physical and electrochemical properties of LiFePO4 nanoparticles synthesized by a combination of spray pyrolysis with wet ball-milling. Journal of Power Sources, 2009, 194, 1029-1035.	4.0	77
12	Magnetic nanocellulose: A potential material for removal of dye from water. Journal of Hazardous Materials, 2020, 394, 122571.	6.5	75
13	High yield conversion of cellulosic biomass into 5-hydroxymethylfurfural and a study of the reaction kinetics of cellulose to HMF conversion in a biphasic system. Catalysis Science and Technology, 2016, 6, 6257-6266.	2.1	74
14	Beyond Hydrogen Evolution: Solar-Driven, Water-Donating Transfer Hydrogenation over Platinum/Carbon Nitride. ACS Catalysis, 2020, 10, 9227-9235.	5.5	68
15	Guaiacol hydrodeoxygenation reaction catalyzed by highly dispersed, single layered MoS ₂ /C. Catalysis Science and Technology, 2015, 5, 4422-4432.	2.1	67
16	Recent advances in liquefaction technologies for production of liquid hydrocarbon fuels from biomass and carbonaceous wastes. Renewable and Sustainable Energy Reviews, 2019, 115, 109400.	8.2	66
17	Preparation of LiFePO4/C composite powders by ultrasonic spray pyrolysis followed by heat treatment and their electrochemical properties. Materials Research Bulletin, 2008, 43, 3305-3317.	2.7	64
18	Synthesis of spherical LiMn2O4 microparticles by a combination of spray pyrolysis and drying method. Powder Technology, 2008, 181, 228-236.	2.1	60

#	Article	IF	CITATIONS
19	Toward Excellence of Transition Metalâ€Based Catalysts for CO ₂ Electrochemical Reduction: An Overview of Strategies and Rationales. Small Methods, 2020, 4, 2000033.	4.6	60
20	Fabricating highly efficient heterostructured CuBi ₂ O ₄ photocathodes for unbiased water splitting. Journal of Materials Chemistry A, 2020, 8, 2498-2504.	5.2	57
21	Self-sustaining smouldering combustion of waste: A review on applications, key parameters and potential resource recovery. Fuel Processing Technology, 2020, 205, 106425.	3.7	56
22	Bismuth based photoelectrodes for solar water splitting. Journal of Energy Chemistry, 2021, 61, 517-530.	7.1	47
23	Nanosphere Lithography: A Versatile Approach to Develop Transparent Conductive Films for Optoelectronic Applications. Advanced Materials, 2022, 34, e2103842.	11.1	45
24	Enabling Process Intensification by 3 D Printing of Catalytic Structures. ChemCatChem, 2017, 9, 4132-4138.	1.8	39
25	Red-mud based porous nanocatalysts for valorisation of municipal solid waste. Journal of Hazardous Materials, 2020, 396, 122711.	6.5	35
26	Nano―and Microscale Engineering of the Molybdenum Disulfideâ€Based Catalysts for Syngas to Ethanol Conversion. ChemCatChem, 2014, 6, 2394-2402.	1.8	33
27	Porous MgH2/C composite with fast hydrogen storage kinetics. International Journal of Hydrogen Energy, 2012, 37, 8370-8378.	3.8	30
28	Catalyst–Electrolyte Interactions in Aqueous Reline Solutions for Highly Selective Electrochemical CO ₂ Reduction. ChemSusChem, 2020, 13, 304-311.	3.6	29
29	Molten Salt Synthesis of Atomic Heterogeneous Catalysts: Old Chemistry for Advanced Materials. European Journal of Inorganic Chemistry, 2020, 2020, 2942-2949.	1.0	26
30	Transforming red mud into an efficient Acid-Base catalyst by hybridization with mesoporous ZSM-5 for Co-pyrolysis of biomass and plastics. Chemical Engineering Journal, 2022, 430, 132965.	6.6	24
31	Highly active and robust Ni–MoS ₂ supported on mesoporous carbon: a nanocatalyst for hydrodeoxygenation reactions. RSC Advances, 2019, 9, 17194-17202.	1.7	21
32	Metal-incorporated mesoporous oxides: Synthesis and applications. Journal of Hazardous Materials, 2021, 401, 123348.	6.5	19
33	Câ€"H bond cyanation of arenes using N,N-dimethylformamide and NH ₄ HCO ₃ as a CN source over a hydroxyapatite supported copper catalyst. Catalysis Science and Technology, 2016, 6, 8055-8062.	2.1	15
34	Zeolite shape selectivity impact on LDPE and PP catalytic pyrolysis products and coke nature. Sustainable Energy and Fuels, 2022, 6, 1587-1602.	2.5	15
35	TiNâ€Cu Heterogeneous Nanocatalysts for Effective Depolymerisation of Oxidised Lignin. ChemistrySelect, 2018, 3, 3379-3385.	0.7	14
36	Hybridization of ZSMâ€5 with Spinel Oxides for Biomass Vapour Upgrading. ChemCatChem, 2020, 12, 1403-1412.	1.8	11

#	Article	IF	CITATIONS
37	Hydrocarbon hydrogen carriers for catalytic transfer hydrogenation of guaiacol. International Journal of Hydrogen Energy, 2020, 45, 27381-27391.	3.8	9
38	Enabling compact GTL by 3D-printing of structured catalysts. Results in Engineering, 2020, 6, 100127.	2.2	9
39	Conversion of agricultural waste into stable biocrude using spinel oxide catalysts. Journal of Hazardous Materials, 2021, 402, 123539.	6.5	9
40	Syngas to higher alcohols synthesis over 3D printed KMoCo/ZSM5 monolith. Chemical Engineering Journal Advances, 2020, 3, 100024.	2.4	6
41	The catalytic activity of KMoCo carbon spheres for higher alcohols synthesis from syngas. Applied Catalysis A: General, 2020, 605, 117803.	2.2	6
42	Advances in liquefaction for the production of hydrocarbon biofuels., 2022,, 127-176.		5
43	Fischer-Tropsch synthesis to hydrocarbon biofuels: Present status and challenges involved. , 2022, , 77-96.		5
44	Tailoring ZSM-5 zeolite porosity and acidity for efficient conversion of municipal solid waste to fuel. Microporous and Mesoporous Materials, 2022, 330, 111579.	2.2	4
45	Role of promoters and catalyst supports for selective synthesis of higher alcohols over molybdenum carbides. Canadian Journal of Chemical Engineering, 2019, 97, 2077-2085.	0.9	2
46	Catalyst–Electrolyte Interactions in Aqueous Reline Solutions for Highly Selective Electrochemical CO 2 Reduction. ChemSusChem, 2020, 13, 282-282.	3.6	2
47	Role of Catalyst Support's Physicochemical Properties on Catalytic Transfer Hydrogenation over Palladium Catalysts. ChemCatChem, 0, , .	1.8	2
48	Synthesis and Hydrogen Storage Properties of Magnesium Nanoparticles with Core/Shell Structure. Materials Science Forum, 2012, 736, 120-126.	0.3	1
49	Highly adhesive and disposable inorganic barrier films: made from 2D silicate nanosheets and water. Journal of Materials Chemistry A, 2022, 10, 1956-1964.	5.2	1
50	Nanostructured NiMoS2/Carbon Catalysts for Syngas Conversion to Higher Alcohols. Journal of Nanoscience and Nanotechnology, 2020, 20, 5260-5266.	0.9	0