David Baracchi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7807092/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Evidence for antiseptic behaviour towards sick adult bees in honey bee colonies. Journal of Insect Physiology, 2012, 58, 1589-1596.	2.0	107
2	Beyond the antipredatory defence: Honey bee venom function as a component of social immunity. Toxicon, 2011, 58, 550-557.	1.6	74
3	Behavioural evidence for self-medication in bumblebees?. F1000Research, 2015, 4, 73.	1.6	62
4	Nicotine in floral nectar pharmacologically influences bumblebee learning of floral features. Scientific Reports, 2017, 7, 1951.	3.3	51
5	Differences in venom and cuticular peptides in individuals of Apis mellifera (Hymenoptera: Apidae) determined by MALDI-TOF MS. Journal of Insect Physiology, 2010, 56, 366-375.	2.0	48
6	Weak and contradictory effects of self-medication with nectar nicotine by parasitized bumblebees. F1000Research, 2015, 4, 73.	1.6	42
7	Defence reactions of <i>Apis mellifera ligustica</i> against attacks from the European hornet <i>Vespa crabro</i> . Ethology Ecology and Evolution, 2010, 22, 281-294.	1.4	41
8	A Socio‧patial Combined Approach Confirms a Highly Compartmentalised Structure in Honeybees. Ethology, 2014, 120, 1167-1176.	1.1	41
9	From individual to collective immunity: The role of the venom as antimicrobial agent in the Stenogastrinae wasp societies. Journal of Insect Physiology, 2012, 58, 188-193.	2.0	39
10	Pheromone components affect motivation and induce persistent modulation of associative learning and memory in honey bees. Communications Biology, 2020, 3, 447.	4.4	38
11	Facial markings in the hover wasps: quality signals and familiar recognition cues in two species of Stenogastrinae. Animal Behaviour, 2013, 85, 203-212.	1.9	35
12	Speed and accuracy in nest-mate recognition: a hover wasp prioritizes face recognition over colony odour cues to minimize intrusion by outsiders. Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20142750.	2.6	32
13	Behavioural evidence for self-medication in bumblebees?. F1000Research, 0, 4, 73.	1.6	32
14	Do Insects Have Emotions? Some Insights from Bumble Bees. Frontiers in Behavioral Neuroscience, 2017, 11, 157.	2.0	31
15	Phylogeography and counter-intuitive inferences in island biogeography: evidence from morphometric markers in the mobile butterfly Maniola jurtina (Linnaeus) (Lepidoptera, Nymphalidae). Biological Journal of the Linnean Society, 0, 98, 677-692.	1.6	30
16	Pheromones modulate reward responsiveness and non-associative learning in honey bees. Scientific Reports, 2017, 7, 9875.	3.3	30
17	Does Holistic Processing Require a Large Brain? Insights From Honeybees and Wasps in Fine Visual Recognition Tasks. Frontiers in Psychology, 2018, 9, 1313.	2.1	29
18	Medium molecular weight polar substances of the cuticle as tools in the study of the taxonomy, systematics and chemical ecology of tropical hover wasps (Hymenoptera: Stenogastrinae). Journal of Zoological Systematics and Evolutionary Research, 2010, 48, 109-114.	1.4	27

DAVID BARACCHI

#	Article	IF	CITATIONS
19	Ants as bioaccumulators of metals from soils: Body content and tissue-specific distribution of metals in the ant Crematogaster scutellaris. European Journal of Soil Biology, 2013, 58, 24-31.	3.2	26
20	Acute and chronic ingestion of polyethylene (PE) microplastics has mild effects on honey bee health and cognition. Environmental Pollution, 2022, 305, 119318.	7.5	26
21	Biopesticides and insect pollinators: Detrimental effects, outdated guidelines, and future directions. Science of the Total Environment, 2022, 837, 155714.	8.0	26
22	Lateralization of Sucrose Responsiveness and Non-associative Learning in Honeybees. Frontiers in Psychology, 2018, 9, 425.	2.1	25
23	Nectar non-protein amino acids (NPAAs) do not change nectar palatability but enhance learning and memory in honey bees. Scientific Reports, 2021, 11, 11721.	3.3	18
24	Facial patterns in a tropical social wasp correlate with colony membership. Die Naturwissenschaften, 2016, 103, 80.	1.6	17
25	Foraging bumblebees use social cues more when the task is difficult. Behavioral Ecology, 2018, 29, 186-192.	2.2	17
26	Relevance of wing morphology in distinguishing and classifying genera and species of Stenogastrinae wasps. Contributions To Zoology, 2011, 80, 191-199.	0.5	16
27	Cognitive ecology of pollinators and the main determinants of foraging plasticity. Environmental Epigenetics, 2019, 65, 421-424.	1.8	16
28	Pheromone-Induced Accuracy of Nestmate Recognition in Carpenter Ants: Simultaneous Decrease in Type I and Type II Errors. American Naturalist, 2019, 193, 267-278.	2.1	15
29	Home Range Analysis in the Study of Spatial Organization on the Comb in the Paper Wasp <i>Polistes Dominulus</i> . Ethology, 2010, 116, 579-587.	1.1	14
30	Exposure to a biopesticide interferes with sucrose responsiveness and learning in honey bees. Scientific Reports, 2020, 10, 19929.	3.3	13
31	Top-down sequencing of Apis dorsata apamin by MALDI-TOF MS and evidence of its inactivity against microorganisms. Toxicon, 2013, 71, 105-112.	1.6	12
32	Aversive learning of odor-heat associations in ants. Journal of Experimental Biology, 2017, 220, 4661-4668.	1.7	11
33	Evidence of cognitive specialization in an insect: proficiency is maintained across elemental and higher-order visual learning but not between sensory modalities in honey bees. Journal of Experimental Biology, 2021, 224, .	1.7	11
34	Venom as a Component of External Immune Defense in Hymenoptera. Toxinology, 2017, , 213-233.	0.2	9
35	Insect sentience and the rise of a new inclusive ethics. Animal Sentience, 2020, 5, .	0.5	9

 $_{36}$ Determinants of immature brood and nest recognition in a stenogastrine wasp (Hymenoptera) Tj ETQq0 0 0 rgBT /Qyerlock 10 Tf 50 62

DAVID BARACCHI

#	Article	IF	CITATIONS
37	Nest architecture and colony composition of communally nesting Spilomena socialis sp. n. (Hymenoptera, Crabronidae, Pemphredoninae) from peninsular Malaysia. Journal of Hymenoptera Research, 2014, 41, 113-129.	0.8	7
38	Major changes in the sex differences in cuticular chemical profiles of the western conifer seed bug (Leptoglossus occidentalis) after laboratory rearing. Journal of Insect Physiology, 2013, 59, 738-744.	2.0	4
39	Vocal accommodation in penguins (<i>Spheniscus demersus</i>) as a result of social environment. Proceedings of the Royal Society B: Biological Sciences, 2022, 289, .	2.6	4
40	Social biology of <i>Parischnogaster striatula</i> (Hymenoptera: Stenogastrinae). Tropical Zoology, 2013, 26, 105-119.	0.6	3
41	Phenotypic characterization of cryptic <i><scp>D</scp>iplodia</i> species by <scp>MALDI</scp> â€ <scp>TOF MS</scp> and the bias of mycelium age. Forest Pathology, 2013, 43, 455-461.	1.1	3
42	The reproductive division of labour but not worker age affects spatial sorting within the nest in a paper wasp. Insectes Sociaux, 2017, 64, 379-385.	1.2	3
43	Testing the signal value of clypeal black patterning in an Italian population of the paper wasp Polistes dominula. Insectes Sociaux, 2018, 65, 161-169.	1.2	2
44	Venom as a Component of External Immune Defense in Hymenoptera. , 2015, , 1-17.		1
45	Formic acid modulates latency and accuracy of nestmate recognition in carpenter ants. Journal of Experimental Biology, 2021, 224, .	1.7	1
46	Le difese naturali delle colonie di api contro le malattie. , 2014, , 27-48.		0

Le difese naturali delle colonie di api contro le malattie. , 2014, , 27-48. 46