Heather D Alexander

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7806996/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Siberian taiga and tundra fire regimes from 2001–2020. Environmental Research Letters, 2022, 17, 025001.	2.2	38
2	Exposure to fire affects acorn removal by altering consumer preference. Forest Ecology and Management, 2022, 508, 120044.	1.4	0
3	Rootâ€associated fungi not tree density influences stand nitrogen dynamics at the larch forest–tundra ecotone. Journal of Ecology, 2022, 110, 1419-1431.	1.9	5
4	Spatial patterns of unburned refugia in Siberian larch forests during the exceptional 2020 fire season. Global Ecology and Biogeography, 2022, 31, 2041-2055.	2.7	1
5	Soil Carbon and Nitrogen Storage in Natural and Prop-Scarred Thalassia Testudinum Seagrass Meadows. Estuaries and Coasts, 2021, 44, 178-188.	1.0	7
6	Mesophication of Oak Landscapes: Evidence, Knowledge Gaps, and Future Research. BioScience, 2021, 71, 531-542.	2.2	59
7	Impacts of increasing fine fuel loads on acorn germination and early growth of oak seedlings. Fire Ecology, 2021, 17, .	1.1	6
8	Shifting tree species composition of upland oak forests alters leaf litter structure, moisture, and flammability. Forest Ecology and Management, 2021, 482, 118860.	1.4	18
9	Carbon loss from boreal forest wildfires offset by increased dominance of deciduous trees. Science, 2021, 372, 280-283.	6.0	127
10	Understory plant diversity and composition across a postfire tree density gradient in a Siberian Arctic boreal forest. Canadian Journal of Forest Research, 2021, 51, 720-731.	0.8	14
11	Fire effects on post-invasion spread of Chinese tallow (Triadica sebifera) in wet pine flatwood ecosystems in the southeastern United States. Forest Ecology and Management, 2021, 500, 119658.	1.4	1
12	Fire Ecology and Management in Eastern Broadleaf and Appalachian Forests. Managing Forest Ecosystems, 2021, , 105-147.	0.4	9
13	Increasing fire and the decline of fire adapted black spruce in the boreal forest. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	107
14	Facultative seed predators drive community-level indirect effects of mast seeding. Forest Ecology and Management, 2021, 502, 119713.	1.4	4
15	Siberian Ecosystems as Drivers of Cryospheric Climate Feedbacks in the Terrestrial Arctic. Frontiers in Climate, 2021, 3, .	1.3	3
16	Could canopy, bark, and leaf litter traits of encroaching non-oak species influence future flammability of upland oak forests?. Forest Ecology and Management, 2020, 458, 117731.	1.4	28
17	Evaluating Post-Fire Vegetation Recovery in Cajander Larch Forests in Northeastern Siberia Using UAV Derived Vegetation Indices. Remote Sensing, 2020, 12, 2970.	1.8	23
18	Open forest ecosystems: An excluded state. Forest Ecology and Management, 2020, 472, 118256.	1.4	45

Heather D Alexander

#	Article	IF	CITATIONS
19	Prescribed fire and natural canopy gap disturbances: Impacts on upland oak regeneration. Forest Ecology and Management, 2020, 465, 118107.	1.4	20
20	Spatial and Temporal Variability of Throughfall among Oak and Co-occurring Non-oak Tree Species in an Upland Hardwood Forest. Geosciences (Switzerland), 2019, 9, 405.	1.0	11
21	Tree density influences ecohydrological drivers of plant–water relations in a larch boreal forest in Siberia. Ecohydrology, 2019, 12, e2132.	1.1	11
22	Coastal Prairie Recovery in Response to Shrub Removal Method and Degree of Shrub Encroachment. Rangeland Ecology and Management, 2019, 72, 275-282.	1.1	8
23	Early stage litter decomposition across biomes. Science of the Total Environment, 2018, 628-629, 1369-1394.	3.9	177
24	Impacts of increased soil burn severity on larch forest regeneration on permafrost soils of far northeastern Siberia. Forest Ecology and Management, 2018, 417, 144-153.	1.4	41
25	Tundra Trait Team: A database of plant traits spanning the tundra biome. Global Ecology and Biogeography, 2018, 27, 1402-1411.	2.7	57
26	Vegetation Indices Do Not Capture Forest Cover Variation in Upland Siberian Larch Forests. Remote Sensing, 2018, 10, 1686.	1.8	37
27	Plant functional trait change across a warming tundra biome. Nature, 2018, 562, 57-62.	13.7	451
28	Fire severity effects on soil carbon and nutrients and microbial processes in a Siberian larch forest. Global Change Biology, 2018, 24, 5841-5852.	4.2	55
29	Understory vegetation mediates permafrost active layer dynamics and carbon dioxide fluxes in open-canopy larch forests of northeastern Siberia. PLoS ONE, 2018, 13, e0194014.	1.1	19
30	Gap regeneration within mature deciduous forests of Interior Alaska: Implications for future forest change. Forest Ecology and Management, 2017, 396, 35-43.	1.4	12
31	Patterns of bryophyte succession in a 160-year chronosequence in deciduous and coniferous forests of boreal Alaska. Canadian Journal of Forest Research, 2017, 47, 1021-1032.	0.8	25
32	Environmental constraints on transpiration and stomatal conductance in a Siberian Arctic boreal forest. Journal of Geophysical Research G: Biogeosciences, 2017, 122, 487-497.	1.3	24
33	Alterations to the fuel bed after single and repeated prescribed fires in an Appalachian hardwood forest. Forest Ecology and Management, 2017, 403, 126-136.	1.4	21
34	Variability in above- and belowground carbon stocks in a Siberian larch watershed. Biogeosciences, 2017, 14, 4279-4294.	1.3	21
35	Use of shelter tubes, grassâ€specific herbicide, and herbivore exclosures to reduce stressors and improve restoration of semiarid thornscrub forests. Restoration Ecology, 2016, 24, 785-793.	1.4	12
36	Spatial variation in vegetation productivity trends, fire disturbance, and soil carbon across arctic-boreal permafrost ecosystems. Environmental Research Letters, 2016, 11, 095008.	2.2	40

Heather D Alexander

#	Article	IF	CITATIONS
37	A Canopy Shift in Interior Alaskan Boreal Forests: Consequences for Above- and Belowground Carbon and Nitrogen Pools during Post-fire Succession. Ecosystems, 2016, 19, 98-114.	1.6	59
38	Biomass offsets little or none of permafrost carbon release from soils, streams, and wildfire: an expert assessment. Environmental Research Letters, 2016, 11, 034014.	2.2	199
39	Growth and survival of thornscrub forest seedlings in response to restoration strategies aimed at alleviating abiotic and biotic stressors. Journal of Arid Environments, 2016, 124, 180-188.	1.2	13
40	Changes in stand structure and tree vigor with repeated prescribed fire in an Appalachian hardwood forest. Forest Ecology and Management, 2015, 340, 46-61.	1.4	68
41	Estimating upper soil horizon carbon stocks in a permafrost watershed of Northeast Siberia by integrating field measurements with Landsat-5 TM and WorldView-2 satellite data. GIScience and Remote Sensing, 2015, 52, 131-157.	2.4	10
42	Spatially explicit estimation of aboveground boreal forest biomass in the Yukon River Basin, Alaska. International Journal of Remote Sensing, 2015, 36, 939-953.	1.3	8
43	Biomass allometry for alder, dwarf birch, and willow in boreal forest and tundra ecosystems of far northeastern Siberia and north-central Alaska. Forest Ecology and Management, 2015, 337, 110-118.	1.4	55
44	Increasing Red Maple Leaf Litter Alters Decomposition Rates and Nitrogen Cycling in Historically Oak-Dominated Forests of the Eastern U.S Ecosystems, 2014, 17, 1371-1383.	1.6	45
45	Reconstructing Disturbances and Their Biogeochemical Consequences over Multiple Timescales. BioScience, 2014, 64, 105-116.	2.2	80
46	Refining the Oak-Fire Hypothesis for Management of Oak-Dominated Forests of the Eastern United States. Journal of Forestry, 2012, 110, 257-266.	0.5	120
47	Implications of increased deciduous cover on stand structure and aboveground carbon pools of Alaskan boreal forests. Ecosphere, 2012, 3, 1-21.	1.0	59
48	Carbon Accumulation Patterns During Post-Fire Succession in Cajander Larch (Larix cajanderi) Forests of Siberia. Ecosystems, 2012, 15, 1065-1082.	1.6	61
49	Cajander larch (<i>Larix cajanderi</i>) biomass distribution, fire regime and post-fire recovery in northeastern Siberia. Biogeosciences, 2012, 9, 3943-3959.	1.3	52
50	The impacts and implications of an intensifying fire regime on Alaskan boreal forest composition and albedo. Global Change Biology, 2011, 17, 2853-2866.	4.2	142
51	Implications of a predicted shift from upland oaks to red maple on forest hydrology and nutrient availability. Canadian Journal of Forest Research, 2010, 40, 716-726.	0.8	72
52	Foliar morphology and chemistry of upland oaks, red maple, and sassafras seedlings in response to single and repeated prescribed fires. Canadian Journal of Forest Research, 2009, 39, 740-754.	0.8	9
53	Effects of pulsed riverine versus non-pulsed wastewater inputs of freshwater on plant community structure in a semi-arid salt marsh. Wetlands, 2008, 28, 984-994.	0.7	10
54	Survival and growth of upland oak and co-occurring competitor seedlings following single and repeated prescribed fires. Forest Ecology and Management, 2008, 256, 1021-1030.	1.4	68

#	Article	IF	CITATIONS
55	Treated Wastewater Effluent as an Alternative Freshwater Source in a Hypersaline Salt Marsh: Impacts on Salinity, Inorganic Nitrogen, and Emergent Vegetation. Journal of Coastal Research, 2006, 222, 377-392.	0.1	16
56	Freshwater inundation effects on emergent vegetation of a hypersaline salt marsh. Estuaries and Coasts, 2002, 25, 1426-1435.	1.7	61