
Marco Cremona

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7806347/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	On the energy gap determination of organic optoelectronic materials: the case of porphyrin derivatives. Materials Advances, 2022, 3, 1791-1803.	5.4	21
2	On the Response Speed of Narrowband Organic Optical Upconversion Devices. Advanced Optical Materials, 2022, 10, .	7.3	7
3	Monolayer of silica nanospheres assembled onto ITO-coated glass substrates by spin-coating. Nanotechnology, 2021, 32, 205603.	2.6	2
4	Sodium-Mediated Low-Temperature Synthesis of Monolayers of Molybdenum Disulfide for Nanoscale Optoelectronic Devices. ACS Applied Nano Materials, 2021, 4, 4172-4180.	5.0	14
5	Dielectric-Loaded Waveguides as Advanced Platforms for Diagnostics and Application of Transparent Thin Films. Langmuir, 2021, 37, 3248-3260.	3.5	6
6	Biosubstrates Obtained from Gellan Gum for Organic Light-Emitting Diodes. ACS Applied Electronic Materials, 2021, 3, 2333-2340.	4.3	6
7	Self-Supported Smart Bacterial Nanocellulose–Phosphotungstic Acid Nanocomposites for Photochromic Applications. Frontiers in Materials, 2021, 8, .	2.4	11
8	Enhanced Performance of Allâ€Solution Processed Multilayer OLEDs by Photoluminescence Lifetime Reduction of Cu(l) Complex Emitters Containing Chalcogenolateâ€Diimine Ligands. European Journal of Inorganic Chemistry, 2021, 2021, 3412-3418.	2.0	1
9	Novel scanning magnetic microscopy method for the characterization of magnetic nanoparticles. Journal of Magnetism and Magnetic Materials, 2020, 499, 166300.	2.3	16
10	Bright neodymium complexes for efficient near infra-red organic light emitting diodes. New Journal of Chemistry, 2020, 44, 14161-14170.	2.8	10
11	The Influence of Calcination Temperature on Photocatalytic Activity of TiO2-Acetylacetone Charge Transfer Complex towards Degradation of NOx under Visible Light. Catalysts, 2020, 10, 1463.	3.5	13
12	Emission redshift in DCM2-doped <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi mathvariant="normal">Alq<mml:mn>3</mml:mn></mml:mi </mml:msub> caused by nonlinear Stark shifts and FA¶rster-mediated exciton diffusion. Physical Review B, 2020, 102, .</mml:math 	3.2	11
13	Understanding the effect of solvent additive in polymeric thin film: turning a bilayer into a bulk heterojunction-like photovoltaic device. Journal Physics D: Applied Physics, 2020, 53, 365101.	2.8	2
14	Designing highly luminescent aryloxy-benzothiadiazole derivatives with aggregation-induced enission. Dyes and Pigments, 2020, 178, 108377.	3.7	26
15	Efficient Visibleâ€Lightâ€Excitable Eu ³⁺ Complexes for Red Organic Lightâ€Emitting Diodes. European Journal of Inorganic Chemistry, 2020, 2020, 1260-1270.	2.0	25
16	Chemical and structural modification of organic devices via focused ion-beams. Materials Chemistry and Physics, 2020, 249, 122932.	4.0	1
17	Study of Dactylopius opuntiae and its electrical properties as thin film for application in organic devices. Solid State Sciences, 2020, 102, 106173.	3.2	1
18	Near-infrared absorbing cyanine dyes for all-organic optical upconversion devices. Organic Electronics, 2019, 74, 96-102.	2.6	8

#	Article	IF	CITATIONS
19	Ecological Biosubstrates Obtained from Onion Pulp (<i>Allium cepa</i> L.) for Flexible Organic Light-Emitting Diodes. ACS Applied Materials & Interfaces, 2019, 11, 42420-42428.	8.0	13
20	Influence of nonradiative Auger process in the lanthanide complexes lifetime near interfaces in organic light-emitting diode structures. Journal of Applied Physics, 2019, 126, 165501.	2.5	4
21	Recent advances with optical upconverters made from all-organic and hybrid materials. Science and Technology of Advanced Materials, 2019, 20, 497-510.	6.1	22
22	Light-Emitting Porphyrin Derivative Obtained from a Subproduct of the Cashew Nut Shell Liquid: A Promising Material for OLED Applications. Materials, 2019, 12, 1063.	2.9	12
23	Transparent bacterial cellulose nanocomposites used as substrate for organic light-emitting diodes. Journal of Materials Science: Materials in Electronics, 2019, 30, 16718-16723.	2.2	21
24	Efficient terbium complex based on a novel pyrazolone derivative ligand used in solution-processed OLEDs. Journal of Luminescence, 2019, 208, 57-62.	3.1	29
25	Two-color surface plasmon resonance nanosizer for gold nanoparticles. Optics Express, 2019, 27, 3200.	3.4	18
26	SPR sensors for monitoring the degradation processes of Eu(dbm)3(phen) and Alq3 thin films under atmospheric and UVA exposure. Applied Surface Science, 2018, 442, 759-766.	6.1	14
27	Biocompatible Au@Carbynoid/Pluronic-F127 nanocomposites synthesized by pulsed laser ablation assisted CO2 recycling. Applied Surface Science, 2018, 441, 347-355.	6.1	17
28	High hole-mobility of rrP3HT in organic field-effect transistors using low-polarity polyurethane gate dielectric. Organic Electronics, 2018, 58, 33-37.	2.6	15
29	Squaraine Dye for a Visibly Transparent All-Organic Optical Upconversion Device with Sensitivity at 1000 nm. ACS Applied Materials & Interfaces, 2018, 10, 11063-11069.	8.0	47
30	Phenoxy-benzothiadiazole dyes: Synthesis, photophysical properties and preliminary application in OLEDs. Tetrahedron Letters, 2018, 59, 2994-2999.	1.4	18
31	Room temperature molecular electrophosphorescence detection in organic LEDs with (Gd,) Tj ETQq1 1 0.78431	4 rgBT /O\ 9.6	verlock 10 Tf
32	Investigation of Tin(II)2,3-naphtalocyanine molecule used as near-infrared sensitive layer in organic up-conversion devices. Optical Materials, 2017, 69, 54-60.	3.6	15
33	Near infrared organic light emitting devices based on a new erbium(<scp>iii</scp>) β-diketonate complex: synthesis and optoelectronic investigations. RSC Advances, 2017, 7, 18239-18251.	3.6	20
34	Conformational Change on a Bithiophene-Based Copolymer Induced by Additive Treatment: Application in Organic Photovoltaics. Journal of Physical Chemistry C, 2017, 121, 16035-16044.	3.1	18
35	Enhanced stability of plasmonic metal thin films by CVD grown graphene transfer. Thin Solid Films, 2017, 644, 65-70.	1.8	13
36	ESTUDIO POR ESPECTROSCOPIA DE RETRODISPERSIÓN DE RUTHERFORD DE PELÃCULAS DELGADAS CON COMPLEJOS DE (Sm+Eu). Revista TECNIA, 2017, 26, 14.	0.1	0

#	Article	IF	CITATIONS
37	Luminescent Eu3+–dibenzoylmethanate complex with sulfoxide ligand as sensitizer applied to organic light- emitting diodes. Optica Pura Y Aplicada, 2017, 50, 135-143.	0.1	0
38	Investigation of organic magnetoresistance dependence on spin-orbit coupling using 8-hydroxyquinolinate rare-earth based complexes. Applied Physics Letters, 2016, 108, 203303.	3.3	1
39	Synthesis of oxocarbon-encapsulated gold nanoparticles with blue-shifted localized surface plasmon resonance by pulsed laser ablation in water with CO ₂ absorbers. Nanotechnology, 2016, 27, 255602.	2.6	16
40	Ytterbium β-diketonate complexes for near infra-red organic light-emitting devices. Thin Solid Films, 2016, 620, 34-42.	1.8	29
41	Synthesis of a low-coordinate erbium (III) \hat{l}^2 -diketonate complex assembled by opto-electronically active 1,3-diphenyl-1,3-propanedione and triphenylphosphine oxide ligands. Polyhedron, 2016, 119, 412-419.	2.2	5
42	Synthesis and NIR-optoelectronic properties of a seven-coordinate ytterbium tris β-diketonate complex with C3 geometrical structure. Polyhedron, 2016, 117, 518-525.	2.2	21
43	Luminescent properties of a di-hydrazone derived from the antituberculosis agent isoniazid: Potentiality as an emitting layer constituent for OLED fabrication. Optical Materials, 2016, 52, 186-191.	3.6	12
44	International Conference on Solid Films and Surfaces (ICSFS 2014). IOP Conference Series: Materials Science and Engineering, 2015, 76, 011001.	0.6	0
45	Analysis of the dopant distribution in Co-deposited organic thin films by scanning transmission electron microscopy. Thin Solid Films, 2015, 596, 39-44.	1.8	Ο
46	Naphthalimide-derivative with blue electroluminescence for OLED applications. Journal of Taibah University for Science, 2015, 9, 579-585.	2.5	9
47	New transfer method of CVD-grown graphene using a flexible, transparent and conductive polyaniline-rubber thin film for organic electronic applications. Chemical Engineering Journal, 2015, 273, 509-518.	12.7	49
48	Transparent composites prepared from bacterial cellulose and castor oil based polyurethane as substrates for flexible OLEDs. Journal of Materials Chemistry C, 2015, 3, 11581-11588.	5.5	78
49	Accurate and simultaneous measurement of thickness and refractive index of thermally evaporated thin organic films by surface plasmon resonance spectroscopy. Optics Express, 2014, 22, 18914.	3.4	24
50	Towards reliable charge-mobility benchmark measurements for organic semiconductors. Organic Electronics, 2014, 15, 1263-1272.	2.6	249
51	White OLED based on a temperature sensitive Eu3+/Tb3+ β-diketonate complex. Organic Electronics, 2014, 15, 798-808.	2.6	74
52	Enhancement of open-circuit voltage on organic photovoltaic devices by Al-doped TiO2 modifying layer produced by sol–gel method. Thin Solid Films, 2014, 572, 2-7.	1.8	8
53	Optimization of the Electrical Efficiency of Graded Multilayer Organic Light-Emitting Diodes Supported by Genetic Algorithm. Journal of Computational and Theoretical Nanoscience, 2014, 11, 1505-1511.	0.4	2
54	Determination of dopant concentration in co-deposited organic thin films by using RBS and X-ray fluorescence combined techniques. Optical Materials, 2013, 35, 2440-2443.	3.6	1

#	Article	IF	CITATIONS
55	New rare-earth quinolinate complexes for organic light-emitting devices. Thin Solid Films, 2013, 528, 36-41.	1.8	19
56	Molecular electrophosphorescence in (Sm, Gd)-β-diketonate complex blend for OLED applications. Journal of Luminescence, 2013, 134, 369-373.	3.1	17
57	Modification of PEDOT:PSS anode buffer layer with HFA for flexible polymer solar cells. Chemical Physics Letters, 2013, 572, 73-77.	2.6	16
58	Molecular hyperfine fields in organic magnetoresistance devices. Physical Review B, 2013, 87, .	3.2	13
59	Ultraviolet photodegradation of tris(8-hydroxy-quinolinate) aluminum (Alq3) thin films studied by electron and laser stimulated desorption. Optical Materials, 2012, 35, 29-32.	3.6	7
60	Investigation of the energy transfer mechanism in OLEDs based on a new terbium β-diketonate complex. Organic Electronics, 2012, 13, 90-97.	2.6	34
61			

#	Article	IF	CITATIONS
73	Characterization of a Fiber Optic Sensor Based on LSPR and Specular Reflection. , 2010, , .		1
74	Degradation of the N,N′-bis-(1-naphthyl)-N,N′-diphenyl-1,1′-biphenyl-4,4′-diamine by photon irradiation Solid Films, 2009, 517, 4461-4463.	n. Thin 1.8	6
75	Investigation on Al(III) and Zn(II) complexes containing a calix[4]arene bearing two 8-oxyquinoline pendant arms used as emitting materials for OLEDs. Materials Science and Engineering C, 2009, 29, 267-270.	7.3	10
76	Experimental and theoretical investigation of tris-(8-hydroxy-quinolinate) aluminum (Alq3) photo degradation. Organic Electronics, 2009, 10, 1417-1423.	2.6	33
77	Transparent thermally stable poly(etherimide) film as flexible substrate for OLEDs. Thin Solid Films, 2009, 518, 1419-1423.	1.8	13
78	Improved multilayer OLED architecture using evolutionary genetic algorithm. Thin Solid Films, 2009, 518, 1382-1385.	1.8	11
79	Novel electroluminescent devices containing Eu3+-(2-acyl-1,3-indandionate) complexes with TPPO ligand. Optical Materials, 2009, 32, 345-349.	3.6	15
80	Electroluminescent devices based on rare-earth tetrakis β-diketonate complexes. Thin Solid Films, 2008, 517, 1096-1100.	1.8	36
81	Bacterial cellulose membrane as flexible substrate for organic light emitting devices. Thin Solid Films, 2008, 517, 1016-1020.	1.8	182
82	Photoluminescence, photoabsorption and photoemission studies of hydrazone thin film used as hole transporting material in OLEDs. Journal of the Brazilian Chemical Society, 2008, 19, 872-876.	0.6	6
83	Low-voltage electroluminescence of europium in zinc oxide thin films. Applied Physics Letters, 2007, 90, 023503.	3.3	33
84	Indium tin oxide films prepared via wet chemical route. Thin Solid Films, 2007, 516, 193-197.	1.8	17
85	Electroluminescence of zinc oxide thin-films prepared via polymeric precursor and via sol–gel methods. Thin Solid Films, 2007, 516, 165-169.	1.8	24
86	Low voltage electroluminescence of terbium- and thulium-doped zinc oxide films. Journal of Alloys and Compounds, 2006, 418, 35-38.	5.5	24
87	Synthesis and luminescent properties of Eu3+-complexes with 2-acyl-1,3-indandionates (ACIND) and TPPO ligands: The first X-ray structure of Eu–ACIND complex. Polyhedron, 2006, 25, 3488-3494.	2.2	25
88	White OLED using β-diketones rare earth binuclear complex as emitting layer. Thin Solid Films, 2006, 494, 23-27.	1.8	39
89	Thin film stress measurement by fiber optic strain gage. Thin Solid Films, 2006, 494, 141-145.	1.8	7
90	Organic light emitting diodes based on dipyridamole drug. Thin Solid Films, 2006, 515, 902-906.	1.8	4

#	Article	IF	CITATIONS
91	Electroluminescence of a device based on europium β-diketonate with phosphine oxide complex. Thin Solid Films, 2006, 515, 927-931.	1.8	25
92	Laser irradiation, ion implantation, and e-beam writing of integrated optical structures. , 2005, , .		12
93	Synthesis and spectroscopic behavior of highly luminescent Eu3+–dibenzoylmethanate (DBM) complexes with sulfoxide ligands. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2005, 61, 2643-2649.	3.9	79
94	Production of waveguides in LiF by MeV ion bombardment. Nuclear Instruments & Methods in Physics Research B, 2005, 240, 234-238.	1.4	8
95	Amorphous carbon nitride thin films as electron injection layer in organic LEDs. Thin Solid Films, 2004, 447-448, 74-79.	1.8	6
96	Electrophosphorescence emission in organic light-emitting diodes based on (Sm+Eu) complexes. Thin Solid Films, 2004, 469-470, 59-64.	1.8	29
97	Voltage color tunable OLED with (Sm,Eu)-β-diketonate complex blend. Chemical Physics Letters, 2004, 396, 54-58.	2.6	68
98	Tunable blue organic light emitting diode based on aluminum calixarene supramolecular complex. Applied Physics Letters, 2004, 85, 10-12.	3.3	29
99	Optical and mechanical properties of DLC-Si coatings on polycarbonate. Thin Solid Films, 2003, 433, 199-204.	1.8	37
100	Room-temperature low-voltage electroluminescence in amorphous carbon nitride thin films. Applied Physics Letters, 2003, 82, 4017-4019.	3.3	37
101	Fabrication and characterization of optical waveguides on LiF by ion beam irradiation. , 2003, , .		1
102	Confocal luminescence microscopy characterization of optical waveguides produced by ion beam irradiation on LiF. , 2003, , .		2
103	Confocal microscopy for the testing of integrated optical devices. , 2003, 4829, 665.		1
104	Optical waveguides produced in LiF by MeV ion beam bombardment. Applied Physics Letters, 2002, 81, 4103-4105.	3.3	27
105	Growth and characterization of OLED with samarium complex as emitting and electron transporting layer. Thin Solid Films, 2002, 420-421, 23-29.	1.8	61
106	Deposition and evaluation of DLC–Si protective coatings for polycarbonate materials. Thin Solid Films, 2002, 420-421, 195-199.	1.8	25
107	Growth and characterization of OLEDs with europium complex as emission layer. Brazilian Journal of Physics, 2002, 32, 535-539.	1.4	18
108	Silicon diffusion on LiF films deposited on Si(100) induced by electron beam. Thin Solid Films, 2001, 398-399, 349-355.	1.8	3

#	Article	IF	CITATIONS
109	Grain size distribution analysis in polycrystalline LiF thin films by mathematical morphology techniques on AFM images and X-ray diffraction data. Journal of Microscopy, 2000, 197, 260-267.	1.8	18
110	Realisation and characterisation of LiF/NaF thin film planar waveguides. Thin Solid Films, 2000, 358, 191-195.	1.8	5
111	In situ hard coatings strain measurement using a commercial strain-gage device. Thin Solid Films, 2000, 377-378, 436-440.	1.8	9
112	<title>Lithium fluoride optical waveguides: progress in fabrication and characterization</title> . , 2000, , .		0
113	Uniaxial in-plane magnetic anisotropy and exchange bias in Sm/Fe bilayers. Physical Review B, 1999, 60, 68-71.	3.2	7
114	Extrinsic aggregated colour centres in KF: Na ⁺ . Radiation Effects and Defects in Solids, 1999, 149, 263-267.	1.2	0
115	Sputtering and coloration process in LiF thin layers induced by MeV ion bombardment. Radiation Effects and Defects in Solids, 1999, 149, 215-219.	1.2	2
116	Radiationless transitions and kinetics of the F ⁺ ₃ centre luminescence in LiF. Radiation Effects and Defects in Solids, 1999, 149, 287-292.	1.2	0
117	Grazing incidence X-ray diffraction analysis of alkali fluoride thin films for optical devices. Thin Solid Films, 1998, 333, 157-164.	1.8	9
118	Thermally activated processes in the relaxed excited states of aggregate color centers in KF: Na. Radiation Effects and Defects in Solids, 1998, 146, 323-329.	1.2	0
119	Structural and optical properties of alkali halide multilayer LiF:NaF films. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1997, 15, 1750-1754.	2.1	3
120	Title is missing!. Journal of Materials Science Letters, 1997, 16, 221-223.	0.5	21
121	Photoluminescence of lasing color centers in mixed crystals KCl:KBr:O2. Journal of Luminescence, 1997, 72-74, 626-628.	3.1	Ο
122	Visible and infrared photoluminescence of low-energy electron irradiated LiF:KCl thin films. Journal of Luminescence, 1997, 72-74, 652-654.	3.1	1
123	Structural and optical properties of low nnergy electrons irradiated KCl:LiF multilayer films. Nuclear Instruments & Methods in Physics Research B, 1996, 116, 212-215.	1.4	6
124	Influence of LiF film growth conditions on electron induced color center formation. Nuclear Instruments & Methods in Physics Research B, 1996, 116, 447-451.	1.4	26
125	Radiative and nonradiative processes in the optical cycle of theF3+center in LiF. Physical Review B, 1996, 54, 17508-17514.	3.2	46
126	Crystalline transitions of thin LiF films evaporated on amorphous substrates. Physica Status Solidi A, 1995, 151, 319-327.	1.7	16

#	Article	IF	CITATIONS
127	Triplet state of F3 + in LiF. Radiation Effects and Defects in Solids, 1995, 134, 425-429.	1.2	4
128	Fine structure of the absorption and emission spectra of NI ²⁺ -ions in BALiF ₃ . Radiation Effects and Defects in Solids, 1995, 135, 15-18.	1.2	4
129	NaF films: Growth properties and electron beam induced defects. Radiation Effects and Defects in Solids, 1995, 136, 163-167.	1.2	7
130	Configuration of F A (Na) defects in KF crystals. Radiation Effects and Defects in Solids, 1995, 134, 421-423.	1.2	2
131	F-aggregate centres in KCl films. Radiation Effects and Defects in Solids, 1994, 132, 143-155.	1.2	7
132	Photoluminescence of F B centers in KF : Na +. Journal of Luminescence, 1994, 60-61, 548-551.	3.1	2
133	Photoluminescence of LiF : NaF films at room temperature. Journal of Luminescence, 1994, 60-61, 552-555.	3.1	11
134	Thermal conversion of FA center relaxed excited states in KF : Na+. Journal of Luminescence, 1994, 58, 278-280.	3.1	5
135	Modifications induced by ionizing radiations in the luminescence from single crystals of LiF:Mg,Cu,P. Nuclear Instruments & Methods in Physics Research B, 1994, 91, 215-218.	1.4	2
136	Zero-phonon lines in eirradiated KCl:Tl. Solid State Communications, 1992, 82, 493-496.	1.9	0
137	Photoluminescence of LiF crystal colored by a focused electron beam. Optics Communications, 1992, 94, 139-142.	2.1	40
138	Optical studies of complex color centers in KF crystals. Journal of Luminescence, 1992, 54, 157-163.	3.1	1
139	Luminescence of aggregate color centers in KF. Journal of Luminescence, 1991, 48-49, 792-796.	3.1	1
140	Optical properties of (F2+)HandF-aggregate centers in NaCl:OHâ^'crystals. Physical Review B, 1991, 44, 12189-12196.	3.2	4
141	Off-axis configuration of F _A (II) centres in alkali halides. Radiation Effects and Defects in Solids, 1991, 119-121, 343-348.	1.2	2
142	Optical properties of (F2+)Hcenters in NaCl:OHâ^'crystals. Radiation Effects and Defects in Solids, 1991, 119-121, 547-552.	1.2	0
143	Evaluation of the off-axis tilt of the FA center in KF : Li+. Journal of Physics and Chemistry of Solids, 1990, 51, 1053-1059.	4.0	5
144	Optical waveguides in LiF by ion-beam irradiation: fabrication and characterisation. , 0, , .		0

#	Article	IF	CITATIONS
145	Tuning Emitting Color of Electroluminescent Devices Containing Tris(2‑acyl‑1,3‑indandionate)aluminum(III) Complexes as Emitting Layers. Journal of the Brazilian Chemical Society, 0, , .	0.6	0
146	Development of Conformable Substrates for OLEDs Using Highly Transparent Bacterial Cellulose Modified with Recycled Polystyrene. Advanced Sustainable Systems, 0, , 2000258.	5.3	13