List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7806089/publications.pdf Version: 2024-02-01

IENS RANCSRO

#	Article	IF	CITATIONS
1	Recreational football as a health promoting activity: a topical review. Scandinavian Journal of Medicine and Science in Sports, 2010, 20, 1-13.	2.9	414
2	Anaerobic energy production and O2 deficitâ€debt relationship during exhaustive exercise in humans Journal of Physiology, 1990, 422, 539-559.	2.9	265
3	Effect of high intensity training on capillarization and presence of angiogenic factors in human skeletal muscle. Journal of Physiology, 2004, 557, 571-582.	2.9	209
4	Muscle K ⁺ , Na ⁺ , and Cl ^{â^'} disturbances and Na ⁺ -K ⁺ pump inactivation: implications for fatigue. Journal of Applied Physiology, 2008, 104, 288-295.	2.5	206
5	Effect of high-intensity intermittent training on lactate and H+ release from human skeletal muscle. American Journal of Physiology - Endocrinology and Metabolism, 2004, 286, E245-E251.	3.5	191
6	Effect of muscle acidity on muscle metabolism and fatigue during intense exercise in man Journal of Physiology, 1996, 495, 587-596.	2.9	175
7	Effect of two different intense training regimens on skeletal muscle ion transport proteins and fatigue development. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2007, 292, R1594-R1602.	1.8	171
8	Muscle oxygen kinetics at onset of intense dynamic exercise in humans. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2000, 279, R899-R906.	1.8	169
9	Lactate and potassium fluxes from human skeletal muscle during and after intense, dynamic, knee extensor exercise. Acta Physiologica Scandinavica, 1990, 140, 147-159.	2.2	155
10	Interstitial K ⁺ in human skeletal muscle during and after dynamic graded exercise determined by microdialysis. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2000, 278, R400-R406.	1.8	142
11	Muscular and pulmonary O ₂ uptake kinetics during moderate―and highâ€intensity subâ€maximal kneeâ€extensor exercise in humans. Journal of Physiology, 2009, 587, 1843-1856.	2.9	141
12	Effect of high-intensity exercise training on lactate/H ⁺ transport capacity in human skeletal muscle. American Journal of Physiology - Endocrinology and Metabolism, 1999, 276, E255-E261.	3.5	138
13	Effects of high-intensity intermittent training on potassium kinetics and performance in human skeletal muscle. Journal of Physiology, 2004, 554, 857-870.	2.9	137
14	Lactate and H+ effluxes from human skeletal muscles during intense, dynamic exercise Journal of Physiology, 1993, 462, 115-133.	2.9	126
15	Pro―and antiâ€angiogenic factors in human skeletal muscle in response to acute exercise and training. Journal of Physiology, 2012, 590, 595-606.	2.9	125
16	Muscle interstitial potassium kinetics during intense exhaustive exercise: effect of previous arm exercise. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2003, 285, R143-R148.	1.8	117
17	Four weeks of speed endurance training reduces energy expenditure during exercise and maintains muscle oxidative capacity despite a reduction in training volume. Journal of Applied Physiology, 2009, 106, 73-80.	2.5	114
18	Caffeine intake improves intense intermittent exercise performance and reduces muscle interstitial potassium accumulation. Journal of Applied Physiology, 2011, 111, 1372-1379.	2.5	113

#	Article	IF	CITATIONS
19	Metabolic alkalosis reduces exercise-induced acidosis and potassium accumulation in human skeletal muscle interstitium. Journal of Physiology, 2005, 566, 481-489.	2.9	111
20	Effect of 2-wk intensified training and inactivity on muscle Na ⁺ -K ⁺ pump expression, phospholemman (FXYD1) phosphorylation, and performance in soccer players. Journal of Applied Physiology, 2010, 108, 898-905.	2.5	104
21	Beneficial effects of recreational football on the cardiovascular risk profile in untrained premenopausal women. Scandinavian Journal of Medicine and Science in Sports, 2010, 20, 40-49.	2.9	99
22	Reduced volume but increased training intensity elevates muscle Na ⁺ -K ⁺ pump α ₁ -subunit and NHE1 expression as well as short-term work capacity in humans. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2008, 294, R966-R974.	1.8	97
23	Performance enhancements and muscular adaptations of a 16-week recreational football intervention for untrained women. Scandinavian Journal of Medicine and Science in Sports, 2010, 20, 24-30.	2.9	94
24	Speed endurance training is a powerful stimulus for physiological adaptations and performance improvements of athletes. Scandinavian Journal of Medicine and Science in Sports, 2010, 20, 11-23.	2.9	87
25	Reduced volume and increased training intensity elevate muscle Na ⁺ -K ⁺ pump α ₂ -subunit expression as well as short- and long-term work capacity in humans. Journal of Applied Physiology, 2009, 107, 1771-1780.	2.5	86
26	Lactate transport studied in sarcolemmal giant vesicles from human muscle biopsies: relation to training status. Journal of Applied Physiology, 1994, 77, 1858-1862.	2.5	85
27	V˙O2 Kinetics and Performance in Soccer Players after Intense Training and Inactivity. Medicine and Science in Sports and Exercise, 2011, 43, 1716-1724.	0.4	85
28	Effect of team sports and resistance training on physical function,Âquality of life, and motivation in older adults. Scandinavian Journal of Medicine and Science in Sports, 2017, 27, 852-864.	2.9	85
29	Metabolic stressâ€dependent regulation of the mitochondrial biogenic molecular response to highâ€intensity exercise in human skeletal muscle. Journal of Physiology, 2018, 596, 2823-2840.	2.9	84
30	Passive leg movement enhances interstitial VEGF protein, endothelial cell proliferation, and eNOS mRNA content in human skeletal muscle. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2008, 294, R975-R982.	1.8	81
31	Intense intermittent exercise provides weak stimulus for vascular endothelial growth factor secretion and capillary growth in skeletal muscle. Experimental Physiology, 2013, 98, 585-597.	2.0	81
32	Recruitment of fibre types and quadriceps muscle portions during repeated, intense knee-extensor exercise in humans. Pflugers Archiv European Journal of Physiology, 2004, 449, 56-65.	2.8	77
33	Exercise and exercise training-induced increase in autophagy markers in human skeletal muscle. Physiological Reports, 2018, 6, e13651.	1.7	75
34	The effect of passive movement training on angiogenic factors and capillary growth in human skeletal muscle. Journal of Physiology, 2010, 588, 3833-3845.	2.9	72
35	Limitations in intense exercise performance of athletes – effect of speed endurance training on ion handling and fatigue development. Journal of Physiology, 2017, 595, 2897-2913.	2.9	68
36	Neuromuscular blockade of slow twitch muscle fibres elevates muscle oxygen uptake and energy turnover during submaximal exercise in humans. Journal of Physiology, 2008, 586, 6037-6048.	2.9	66

#	Article	IF	CITATIONS
37	Increased <i>FXYD1</i> and <i>PGCâ€1</i> î± mRNA after blood flowâ€restricted running is related to fibre typeâ€specific AMPK signalling and oxidative stress in human muscle. Acta Physiologica, 2018, 223, e13045.	3.8	63
38	Effect of Additional Speed Endurance Training on Performance and Muscle Adaptations. Medicine and Science in Sports and Exercise, 2012, 44, 1942-1948.	0.4	61
39	Concurrent speed endurance and resistance training improves performance, running economy, and muscle NHE1 in moderately trained runners. Journal of Applied Physiology, 2014, 117, 1097-1109.	2.5	61
40	Effects of high-intensity training on cardiovascular risk factors in premenopausal and postmenopausal women. American Journal of Obstetrics and Gynecology, 2017, 216, 384.e1-384.e11.	1.3	58
41	The 10-20-30 training concept improves performance and health profile in moderately trained runners. Journal of Applied Physiology, 2012, 113, 16-24.	2.5	56
42	Performance in sports – With specific emphasis on the effect of intensified training. Scandinavian Journal of Medicine and Science in Sports, 2015, 25, 88-99.	2.9	56
43	Football as a treatment for hypertension in untrained 30–55â€yearâ€old men: a prospective randomized study. Scandinavian Journal of Medicine and Science in Sports, 2010, 20, 98-102.	2.9	55
44	β ₂ â€Adrenergic stimulation enhances Ca ²⁺ release and contractile properties of skeletal muscles, and counteracts exerciseâ€induced reductions in Na ⁺ –K ⁺ â€ATPase <i>V</i> _{max} in trained men. Journal of Physiology, 2014, 592, 5445-5459.	2.9	55
45	Effects of acute and 2â€week administration of oral salbutamol on exercise performance and muscle strength in athletes. Scandinavian Journal of Medicine and Science in Sports, 2016, 26, 8-16.	2.9	55
46	Subcellular localization and mechanism of secretion of vascular endothelial growth factor in human skeletal muscle. FASEB Journal, 2013, 27, 3496-3504.	0.5	52
47	Localization and function of ATP-sensitive potassium channels in human skeletal muscle. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2003, 284, R558-R563.	1.8	51
48	High-dose inhaled terbutaline increases muscle strength and enhances maximal sprint performance in trained men. European Journal of Applied Physiology, 2014, 114, 2499-2508.	2.5	47
49	Resveratrol modulates the angiogenic response to exercise training in skeletal muscles of aged men. American Journal of Physiology - Heart and Circulatory Physiology, 2014, 307, H1111-H1119.	3.2	47
50	Early Postmenopausal Phase Is Associated With Reduced Prostacyclin-Induced Vasodilation That Is Reversed by Exercise Training. Hypertension, 2016, 68, 1011-1020.	2.7	46
51	Beta ₂ â€adrenoceptor agonist salbutamol increases protein turnover rates and alters signalling in skeletal muscle after resistance exercise in young men. Journal of Physiology, 2018, 596, 4121-4139.	2.9	46
52	Cycling with blood flow restriction improves performance and muscle K ⁺ regulation and alters the effect of antiâ€oxidant infusion in humans. Journal of Physiology, 2019, 597, 2421-2444.	2.9	46
53	Biomarkers of vascular function in premenopausal and recent postmenopausal women of similar age: effect of exercise training. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2014, 306, R510-R517.	1.8	45
54	Combined inhalation of beta ₂ â€agonists improves swim ergometer sprint performance but not highâ€intensity swim performance. Scandinavian Journal of Medicine and Science in Sports, 2014, 24, 814-822.	2.9	44

#	Article	IF	CITATIONS
55	Adaptations to Speed Endurance Training in Highly Trained Soccer Players. Medicine and Science in Sports and Exercise, 2016, 48, 1355-1364.	0.4	44
56	Highâ€intensity exercise training enhances mitochondrial oxidative phosphorylation efficiency in a temperatureâ€dependent manner in human skeletal muscle: implications for exercise performance. FASEB Journal, 2019, 33, 8976-8989.	0.5	44
57	Effect of intensified training on muscle ion kinetics, fatigue development, and repeated short-term performance in endurance-trained cyclists. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2013, 305, R811-R821.	1.8	42
58	Chronic β ₂ â€adrenoceptor agonist treatment alters muscle proteome and functional adaptations induced by high intensity training in young men. Journal of Physiology, 2018, 596, 231-252.	2.9	41
59	Training with blood flow restriction increases femoral artery diameter and thigh oxygen delivery during kneeâ€extensor exercise in recreationally trained men. Journal of Physiology, 2020, 598, 2337-2353.	2.9	41
60	Neuromuscular Fatigue and Metabolism during High-Intensity Intermittent Exercise. Medicine and Science in Sports and Exercise, 2019, 51, 1642-1652.	0.4	39
61	Caffeine, but not bicarbonate, improves 6 min maximal performance in elite rowers. Applied Physiology, Nutrition and Metabolism, 2014, 39, 1058-1063.	1.9	38
62	Mechanisms underlying enhancements in muscle force and power output during maximal cycle ergometer exercise induced by chronic β ₂ -adrenergic stimulation in men. Journal of Applied Physiology, 2015, 119, 475-486.	2.5	38
63	A short period of high-intensity interval training improves skeletal muscle mitochondrial function and pulmonary oxygen uptake kinetics. Journal of Applied Physiology, 2016, 120, 1319-1327.	2.5	36
64	Elevated muscle acidity and energy production during exhaustive exercise in humans. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 1992, 263, R891-R899.	1.8	35
65	Fibre typeâ€specific change in FXYD1 phosphorylation during acute intense exercise in humans. Journal of Physiology, 2013, 591, 1523-1533.	2.9	34
66	Executive summary: Football for health – prevention and treatment of nonâ€communicable diseases across the lifespan through football. Scandinavian Journal of Medicine and Science in Sports, 2014, 24, 147-150.	2.9	34
67	Inhaled Beta2-Agonist Increases Power Output and Glycolysis during Sprinting in Men. Medicine and Science in Sports and Exercise, 2016, 48, 39-48.	0.4	34
68	Hypertrophic effect of inhaled beta ₂ â€agonist with and without concurrent exercise training: A randomized controlled trial. Scandinavian Journal of Medicine and Science in Sports, 2018, 28, 2114-2122.	2.9	33
69	Leg vascular and skeletal muscle mitochondrial adaptations to aerobic highâ€intensity exercise training are enhanced in the early postmenopausal phase. Journal of Physiology, 2017, 595, 2969-2983.	2.9	32
70	The "Football is Medicine―platform—scientific evidence, largeâ€scale implementation of evidenceâ€based concepts and future perspectives. Scandinavian Journal of Medicine and Science in Sports, 2018, 28, 3-7.	2.9	31
71	Impact of adrenaline and metabolic stress on exerciseâ€induced intracellular signaling and PGCâ€1 <i>α</i> mRNA response in human skeletal muscle. Physiological Reports, 2016, 4, e12844.	1.7	30
72	Effect of formoterol, a long-acting l² ₂ -adrenergic agonist, on muscle strength and power output, metabolism, and fatigue during maximal sprinting in men. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2016, 310, R1312-R1321.	1.8	30

#	Article	IF	CITATIONS
73	Combined speed endurance and endurance exercise amplify the exerciseâ€induced PGCâ€1 <i>α</i> and PDK4 mRNA response in trained human muscle. Physiological Reports, 2016, 4, e12864.	1.7	28
74	The effect of exercise and beta ₂ -adrenergic stimulation on glutathionylation and function of the Na,K-ATPase in human skeletal muscle. Physiological Reports, 2015, 3, e12515.	1.7	27
75	Effect of speed endurance and strength training on performance, running economy and muscular adaptations in endurance-trained runners. European Journal of Applied Physiology, 2016, 116, 1331-1341.	2.5	27
76	Relationship between performance at different exercise intensities and skeletal muscle characteristics. Journal of Applied Physiology, 2011, 110, 1555-1563.	2.5	26
77	Adaptations with Intermittent Exercise Training in Post- and Premenopausal Women. Medicine and Science in Sports and Exercise, 2017, 49, 96-105.	0.4	26
78	Blood flow-restricted training enhances thigh glucose uptake during exercise and muscle antioxidant function in humans. Metabolism: Clinical and Experimental, 2019, 98, 1-15.	3.4	26
79	Exercise-induced increase in maximal in vitro Na-K-ATPase activity in human skeletal muscle. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2013, 304, R1161-R1165.	1.8	25
80	Effect of inhaled terbutaline on substrate utilization and 300-kcal time trial performance. Journal of Applied Physiology, 2014, 117, 1180-1187.	2.5	24
81	Feasibility of high-intensity training in asthma. European Clinical Respiratory Journal, 2018, 5, 1468714.	1.5	24
82	Beta2-adrenergic stimulation increases energy expenditure at rest, but not during submaximal exercise in active overweight men. European Journal of Applied Physiology, 2017, 117, 1907-1915.	2.5	23
83	Effects of long-term football training on the expression profile of genes involved in muscle oxidative metabolism. Molecular and Cellular Probes, 2015, 29, 43-47.	2.1	22
84	Effect of floorball training on blood lipids, body composition, muscle strength, and functional capacity of elderly men. Scandinavian Journal of Medicine and Science in Sports, 2017, 27, 1489-1499.	2.9	22
85	Inâ€season adaptations to intense intermittent training and sprint interval training in subâ€elite football players. Scandinavian Journal of Medicine and Science in Sports, 2019, 29, 669-677.	2.9	22
86	Protein kinase Cα activity is important for contraction-induced FXYD1 phosphorylation in skeletal muscle. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2011, 301, R1808-R1814.	1.8	21
87	Infusion of ATP increases leg oxygen delivery but not oxygen uptake in the initial phase of intense kneeâ€extensor exercise in humans. Experimental Physiology, 2014, 99, 1399-1408.	2.0	20
88	Unchanged content of oxidative enzymes in fast-twitch muscle fibers and V˙O2 kinetics after intensified training in trained cyclists. Physiological Reports, 2015, 3, e12428.	1.7	20
89	Effect of speed endurance training and reduced training volume on running economy and single muscle fiber adaptations in trained runners. Physiological Reports, 2018, 6, e13601.	1.7	20
90	Abundance of ClC-1 chloride channel in human skeletal muscle: fiber type specific differences and effect of training. Journal of Applied Physiology, 2018, 125, 470-478.	2.5	20

#	Article	IF	CITATIONS
91	Highâ€intensity exercise training ameliorates aberrant expression of markers of mitochondrial turnover but not oxidative damage in skeletal muscle of men with essential hypertension. Acta Physiologica, 2019, 225, e13208.	3.8	20
92	Beta ₂ â€adrenergic agonist clenbuterol increases energy expenditure and fat oxidation, and induces mTOR phosphorylation in skeletal muscle of young healthy men. Drug Testing and Analysis, 2020, 12, 610-618.	2.6	20
93	Intensive training and reduced volume increases muscle FXYD1 expression and phosphorylation at rest and during exercise in athletes. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2016, 310, R659-R669.	1.8	19
94	Muscle Ionic Shifts During Exercise: Implications for Fatigue and Exercise Performance. , 2021, 11, 1895-1959.		19
95	Urine concentrations of oral salbutamol in samples collected after intense exercise in endurance athletes. Drug Testing and Analysis, 2014, 6, 528-532.	2.6	18
96	Effect of increased and maintained frequency of speed endurance training on performance and muscle adaptations in runners. Journal of Applied Physiology, 2017, 122, 48-59.	2.5	18
97	Cold-water immersion after training sessions: effects on fiber type-specific adaptations in muscle K ⁺ transport proteins to sprint-interval training in men. Journal of Applied Physiology, 2018, 125, 429-444.	2.5	18
98	β ₂ -Adrenergic agonist salbutamol augments hypertrophy in MHCIIa fibers and sprint mean power output but not muscle force during 11 weeks of resistance training in young men. Journal of Applied Physiology, 2021, 130, 617-626.	2.5	17
99	Inclusion of sprints in moderate intensity continuous training leads to muscle oxidative adaptations in trained individuals. Physiological Reports, 2019, 7, e13976.	1.7	16
100	High-intensity interval training remodels the proteome and acetylome of human skeletal muscle. ELife, 0, 11, .	6.0	16
101	Angiogenic potential is reduced in skeletal muscle of aged women. Journal of Physiology, 2020, 598, 5149-5164.	2.9	15
102	The effect of repeated periods of speed endurance training on performance, running economy, and muscle adaptations. Scandinavian Journal of Medicine and Science in Sports, 2018, 28, 381-390.	2.9	14
103	Inactivity and exercise training differentially regulate abundance of Na ⁺ -K ⁺ -ATPase in human skeletal muscle. Journal of Applied Physiology, 2019, 127, 905-920.	2.5	14
104	Effect of beta ₂ â€adrenergic agonist and resistance training on maximal oxygen uptake and muscle oxidative enzymes in men. Scandinavian Journal of Medicine and Science in Sports, 2019, 29, 1881-1891.	2.9	14
105	Nitrateâ€rich beetroot juice ingestion reduces skeletal muscle O ₂ uptake and blood flow during exercise in sedentary men. Journal of Physiology, 2021, 599, 5203-5214.	2.9	14
106	Efficacy of 10â€20â€30 training versus moderateâ€intensity continuous training on HbA1c, body composition and maximum oxygen uptake in male patients with type 2 diabetes: A randomized controlled trial. Diabetes, Obesity and Metabolism, 2020, 22, 767-778.	4.4	13
107	Impact of β-adrenergic signaling in PGC-1α-mediated adaptations in mouse skeletal muscle. American Journal of Physiology - Endocrinology and Metabolism, 2018, 314, E1-E20.	3.5	12
108	<i>β</i> 2-Agonist Induces Net Leg Glucose Uptake and Free Fatty Acid Release at Rest but Not During Exercise in Young Men. Journal of Clinical Endocrinology and Metabolism, 2019, 104, 647-657.	3.6	12

#	Article	IF	CITATIONS
109	High-Intensity Interval Training Decreases Muscle Sympathetic Nerve Activity in Men With Essential Hypertension and in Normotensive Controls. Frontiers in Neuroscience, 2020, 14, 841.	2.8	12
110	The effect of bloodâ€flowâ€restricted interval training on lactate and H ⁺ dynamics during dynamic exercise in man. Acta Physiologica, 2021, 231, e13580.	3.8	12
111	Purinergic Effects on Na,K-ATPase Activity Differ in Rat and Human Skeletal Muscle. PLoS ONE, 2014, 9, e91175.	2.5	12
112	Effect of tapering after a period of high-volume sprint interval training on running performance and muscular adaptations in moderately trained runners. Journal of Applied Physiology, 2018, 124, 259-267.	2.5	11
113	Influence of Prior Intense Exercise and Cold Water Immersion in Recovery for Performance and Physiological Response during Subsequent Exercise. Frontiers in Physiology, 2016, 7, 269.	2.8	10
114	Essential hypertension is associated with blunted smooth muscle cell vasodilator responsiveness and is reversed by 10-20-30 training in men. American Journal of Physiology - Cell Physiology, 2020, 318, C1252-C1263.	4.6	10
115	Aerobic High-Intensity Exercise Training Improves Cardiovascular Health in Older Post-menopausal Women. Frontiers in Aging, 2021, 2, .	2.6	10
116	Leg oxygen uptake in the initial phase of intense exercise is slowed by a marked reduction in oxygen delivery. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2013, 305, R313-R321.	1.8	9
117	Hypertension is associated with blunted NO-mediated leg vasodilator responsiveness that is reversed by high-intensity training in postmenopausal women. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2020, 319, R712-R723.	1.8	8
118	Muscle hypertrophic effect of inhaled beta ₂ â€agonist is associated with augmented insulinâ€stimulated wholeâ€body glucose disposal in young men. Journal of Physiology, 2022, 600, 2345-2357.	2.9	8
119	Hormetic modulation of angiogenic factors by exercise-induced mechanical and metabolic stress in human skeletal muscle. American Journal of Physiology - Heart and Circulatory Physiology, 2020, 319, H824-H834.	3.2	7
120	N-Acetyl cysteine does not improve repeated intense endurance cycling performance of well-trained cyclists. European Journal of Applied Physiology, 2019, 119, 1419-1429.	2.5	6
121	Beta ₂ â€agonist increases skeletal muscle interleukin 6 production and release in response to resistance exercise in men. Scandinavian Journal of Medicine and Science in Sports, 2022, 32, 1099-1108.	2.9	4
122	Single Cell Morphology and High-Energy Phosphate Levels in Quadriceps Muscles from Patients with Fibromyalgia. Journal of Musculoskeletal Pain, 1994, 2, 45-51.	0.3	3
123	Improving betaâ€alanine supplementation strategy to enhance exercise performance in athletes. Journal of Physiology, 2016, 594, 4701-4702.	2.9	3
124	Cardiac perfusion and function after high-intensity exercise training in late premenopausal and recent postmenopausal women: an MRI study. Journal of Applied Physiology, 2019, 126, 1272-1280.	2.5	3
125	No additive effect of acetaminophen when co-ingested with caffeine on cycling performance in well-trained young men. Journal of Applied Physiology, 2021, 131, 238-249.	2.5	3
126	Salbutamol Increases Leg Glucose Uptake and Metabolic Rate but not Muscle Glycogen Resynthesis in Recovery From Exercise. Journal of Clinical Endocrinology and Metabolism, 2022, 107, e1193-e1203.	3.6	3

#	Article	IF	CITATIONS
127	Inorganic phosphate, protons and diprotonated phosphate may contribute to the exacerbated muscle fatigue in older adults. Journal of Physiology, 2019, 597, 4865-4866.	2.9	2
128	Skeletal muscle proteins important for work capacity are altered with type 2 diabetes — Effect of 10â€⊋0â€30 training. Physiological Reports, 2021, 9, e14681.	1.7	2
129	Active Relative to Passive Ischemic Preconditioning Enhances Intense Endurance Performance in Well-Trained Men. International Journal of Sports Physiology and Performance, 2022, , 1-12.	2.3	1
130	Reply to "Letter to the editor: In response to Gunnarsson et al. on improving the quality of exercise interventions― American Journal of Physiology - Cell Physiology, 2020, 319, C908-C909.	4.6	0
131	Effect of oneâ€week oral or inhaled salbutamol treatment with washout on repeated sprint performance in trained subjects. Translational Sports Medicine, 2021, 4, 241-249.	1.1	Ο