Monika Beszterda

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7805978/publications.pdf

Version: 2024-02-01

933447 752698 27 432 10 20 citations g-index h-index papers 28 28 28 627 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Seasonal Qualitative Variations of Phenolic Content in the Stem Bark of <i>Prunus persica</i> var. <i>nucipersica</i> â€Implication for the Use of the Bark as a Source of Bioactive Compounds. ChemistrySelect, 2022, 7, .	1.5	4
2	Comment on Tremmel et al. In Vitro Metabolism of Six C-Glycosidic Flavonoids from Passiflora incarnata L. Int. J. Mol. Sci. 2021, 22, 6566. International Journal of Molecular Sciences, 2022, 23, 4445.	4.1	O
3	Electrospray ionisation mass spectrometric behaviour of flavonoid 5―O â€glucosides and their positional isomers detected in the extracts from the bark of Prunus cerasus L. and Prunus avium L Phytochemical Analysis, 2021, 32, 433-439.	2.4	6
4	Differentiation of bisphenol F diglycidyl ether isomers and their derivatives by HPLC-MS and GC-MS—comment on the published data. Analytical and Bioanalytical Chemistry, 2021, 413, 1893-1903.	3.7	7
5	2,2-Bis(4-Hydroxyphenyl)-1-Propanol—A Persistent Product of Bisphenol A Bio-Oxidation in Fortified Environmental Water, as Identified by HPLC/UV/ESI-MS. Toxics, 2021, 9, 49.	3.7	O
6	Elucidation of glycosylation sites of kaempferol diâ€Oâ€glycosides from methanolic extract of the leaves of Prunus domestica subsp. syriaca. Rapid Communications in Mass Spectrometry, 2021, 35, e9100.	1.5	1
7	The Presence of Mycotoxins in Human Amniotic Fluid. Toxins, 2021, 13, 409.	3.4	2
8	Ethoxylated Butoxyethanol-BADGE Adducts—New Potential Migrants from Epoxy Resin Can Coating Material. Materials, 2021, 14, 3682.	2.9	7
9	Comment on "Phenolic profiling and evaluation of in vitro antioxidant, α-glucosidase and α-amylase inhibitory activities of Lepisanthes fruticosa (Roxb) Leenh fruit extracts― Food Chemistry, 2021, 361, 130107.	8.2	1
10	Detection of flavone C-glycosides in the extracts from the bark of Prunus avium L. and Prunus cerasus L European Journal of Mass Spectrometry, 2020, 26, 369-375.	1.0	8
11	Identification of isoflavones in the extract of supplements for menopause symptoms by direct infusion electrospray ionization tandem mass spectrometry. Analytical Science Advances, 2020, 1, 143-151.	2.8	4
12	Comment on the published data concerning the identification of biochanin A and prunetin by LC/ESI-MS. Talanta, 2020, 211, 120733.	5.5	6
13	Current Research Developments on the Processing and Improvement of the Nutritional Quality of Rapeseed (<i>Brassica napus</i> L.). European Journal of Lipid Science and Technology, 2019, 121, 1800045.	1.5	22
14	Signals of diagnostic ions in the product ion spectra of [M \hat{a}^{\prime} H] < sup> \hat{a}^{\prime} ions of methoxylated flavonoids. Rapid Communications in Mass Spectrometry, 2019, 33, 125-132.	1.5	19
15	Air-drying temperature changes the content of the phenolic acids and flavonols in white mulberry (Morus alba L.) leaves. Ciencia Rural, 2019, 49, .	0.5	13
16	Endocrine disruptor compounds in environment: As a danger for children health. Pediatric Endocrinology, Diabetes and Metabolism, 2018, 24, 88-95.	0.7	39
17	Zearalenone in the Intestinal Tissues of Immature Gilts Exposed per os to Mycotoxins. Toxins, 2015, 7, 3210-3223.	3.4	35
18	Isoflavones present in soybean seeds can be glycosylated at 4′â€∢i>O position as indicated by the ratio of [Y ₀ â€H] ^{â^'} and [Y ₀] ^{â^'} fragment ions. Journal of Mass Spectrometry, 2015, 50, 672-675.	1.6	1

#	Article	IF	CITATION
19	Impact of fat and selected profiles of fatty acids contained in the colostrum and milk of sows of native breeds on piglet rearing. Animal Science Journal, 2015, 86, 83-91.	1.4	10
20	Can Ergosterol Be an Indicator of Fusarium Fungi and Mycotoxins in Cereal Products?. Journal of the Brazilian Chemical Society, 2015, , .	0.6	4
21	Deoxynivalenol and Oxidative Stress Indicators in Winter Wheat Inoculated with Fusarium graminearum. Toxins, 2014, 6, 575-591.	3.4	31
22	Deoxynivalenol in the Gastrointestinal Tract of Immature Gilts under per os Toxin Application. Toxins, 2014, 6, 973-987.	3.4	36
23	Toxigenic Fusarium species infecting wheat heads in Poland. Open Life Sciences, 2014, 9, 163-172.	1.4	22
24	Nonenzymatic Antioxidants in Plants. , 2014, , 201-234.		19
25	Natural occurrence of fumonisins and ochratoxin A in some herbs and spices commercialized in Poland analyzed by UPLC–MS/MS method. Food Microbiology, 2013, 36, 426-431.	4.2	44
26	ABA: Role in Plant Signaling Under Salt Stress. , 2013, , 175-196.		13
27	Occurrence of fumonisins in food – An interdisciplinary approach to the problem. Food Control, 2012, 26, 491-499.	5. 5	72