Ben Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7805922/publications.pdf

Version: 2024-02-01

94 papers

4,218 citations

94433 37 h-index 60 g-index

98 all docs 98 docs citations

98 times ranked 4505 citing authors

#	Article	IF	CITATIONS
1	Single-Crystalline Mesoporous Palladium and Palladium-Copper Nanocubes for Highly Efficient Electrochemical CO ₂ Reduction. CCS Chemistry, 2022, 4, 1376-1385.	7.8	39
2	Precise Synthesis of Hollow Mesoporous Palladium–Sulfur Alloy Nanoparticles for Selective Catalytic Hydrogenation. CCS Chemistry, 2022, 4, 2854-2863.	7.8	23
3	Mesoporosityâ€Enabled Selectivity of Mesoporous Palladiumâ€Based Nanocrystals Catalysts in Semihydrogenation of Alkynes. Angewandte Chemie, 2022, 134, .	2.0	6
4	Mesoporosityâ€Enabled Selectivity of Mesoporous Palladiumâ€Based Nanocrystals Catalysts in Semihydrogenation of Alkynes. Angewandte Chemie - International Edition, 2022, 61, e202114539.	13.8	33
5	A General Concurrent Template Strategy for Ordered Mesoporous Intermetallic Nanoparticles with Controllable Catalytic Performance. Angewandte Chemie, 2022, 134, .	2.0	3
6	A General Concurrent Template Strategy for Ordered Mesoporous Intermetallic Nanoparticles with Controllable Catalytic Performance. Angewandte Chemie - International Edition, 2022, 61, .	13.8	35
7	Porous Metal Nanocrystal Catalysts: Can Crystalline Porosity Enable Catalytic Selectivity?. CCS Chemistry, 2022, 4, 1829-1842.	7.8	29
8	Mesoporous Gold Nanostructures: Synthesis and Beyond. Journal of Physical Chemistry Letters, 2022, 13, 4410-4418.	4.6	5
9	Highly Curved, Quasiâ€Singleâ€Crystalline Mesoporous Metal Nanoplates Promote CC Bond Cleavage in Ethanol Oxidation Electrocatalysis. Advanced Materials, 2022, 34, .	21.0	39
10	Ordered Mesoporous Intermetallic Trimetals for Efficient and pHâ€Universal Hydrogen Evolution Electrocatalysis. Advanced Energy Materials, 2022, 12, .	19.5	36
11	Nobleâ€Metalâ€Based Hollow Mesoporous Nanoparticles: Synthesis Strategies and Applications. Advanced Materials, 2022, 34, .	21.0	44
12	A sequential template strategy toward hierarchical hetero-metal phosphide hollow nanoboxes for electrocatalytic oxygen evolution. Journal of Materials Chemistry A, 2021, 9, 3482-3491.	10.3	26
13	Engineering porous architectures in multicomponent PdCuBP mesoporous nanospheres for electrocatalytic ethanol oxidation. Nano Research, 2021, 14, 3274-3281.	10.4	19
14	Mesoporous Palladium-Boron-Sulfur Alloy Nanospheres for Efficient Hydrogen Evolution. Inorganic Chemistry, 2021, 60, 4380-4384.	4.0	15
15	Ultrathin and Wavy PdB Alloy Nanowires with Controlled Surface Defects for Enhanced Ethanol Oxidation Electrocatalysis. ACS Applied Materials & Electrocatalysis. ACS Applied Materials & Electrocatalysis.	8.0	21
16	A Tunable Multivariate Metal–Organic Framework as a Platform for Designing Photocatalysts. Journal of the American Chemical Society, 2021, 143, 6333-6338.	13.7	69
17	Ultrafine RhNi Nanocatalysts Confined in Hollow Mesoporous Carbons for a Highly Efficient Hydrogen Production from Ammonia Borane. Inorganic Chemistry, 2021, 60, 6820-6828.	4.0	31
18	Synergistic Catalysis of Binary RuP Nanoclusters on Nitrogen-Functionalized Hollow Mesoporous Carbon in Hydrogen Production from the Hydrolysis of Ammonia Borane. Journal of Physical Chemistry Letters, 2021, 12, 696-703.	4.6	40

#	Article	IF	CITATIONS
19	A universal strategy for fast, scalable, and aqueous synthesis of multicomponent palladium alloy ultrathin nanowires. Science China Chemistry, 2021, 64, 245-252.	8.2	16
20	Atomically ordered Rh ₂ P catalysts anchored within hollow mesoporous carbon for efficient hydrogen production. Chemical Communications, 2021, 57, 12345-12348.	4.1	11
21	Mesoporous Noble Metal–Metalloid/Nonmetal Alloy Nanomaterials: Designing Highly Efficient Catalysts. ACS Nano, 2021, 15, 18661-18670.	14.6	28
22	Polymer-guided assembly of inorganic nanoparticles. Chemical Society Reviews, 2020, 49, 465-508.	38.1	196
23	Asymmetric PdPtCu mesoporous hemispheres on nitrogen-functionalized graphene for methanol oxidation electrocatalysis. Journal of Materials Chemistry A, 2020, 8, 15706-15714.	10.3	22
24	Polymerâ€Assisted Coâ€Assembly towards Synthesis of Mesoporous Titania Encapsulated Monodisperse PdAu for Highly Selective Hydrogenation of Phenylacetylene. ChemCatChem, 2020, 12, 1476-1482.	3.7	8
25	Self-limiting growth of ligand-free ultrasmall bimetallic nanoparticles on carbon through under temperature reduction for highly efficient methanol electrooxidation and selective hydrogenation. Applied Catalysis B: Environmental, 2020, 264, 118553.	20.2	20
26	Highly Crystalline Mesoporous Titania Loaded with Monodispersed Gold Nanoparticles: Controllable Metal–Support Interaction in Porous Materials. ACS Applied Materials & Samp; Interfaces, 2020, 12, 9617-9627.	8.0	24
27	Supported Pt Nanoparticles on Mesoporous Titania for Selective Hydrogenation of Phenylacetylene. Frontiers in Chemistry, 2020, 8, 581512.	3.6	11
28	Synthesis and Crystal-Phase Engineering of Mesoporous Palladium–Boron Alloy Nanoparticles. ACS Central Science, 2020, 6, 2347-2353.	11.3	36
29	Hierarchically Hollow and Porous NiO/NiCo ₂ O ₄ Nanoprisms Encapsulated in Graphene Oxide for Lithium Storage. Langmuir, 2020, 36, 9668-9674.	3.5	27
30	Unveiling Synergistic Effects of Interstitial Boron in Palladium-Based Nanocatalysts for Ethanol Oxidation Electrocatalysis. Journal of Physical Chemistry Letters, 2020, 11, 6632-6639.	4.6	41
31	Highly branched and defect-rich PdP nanosheets for ethanol oxidation electrocatalysis. Chemical Communications, 2020, 56, 15667-15670.	4.1	25
32	Ternary metal-metalloid-nonmetal alloy nanowires: a novel electrocatalyst for highly efficient ethanol oxidation electrocatalysis. Science Bulletin, 2020, 65, 1823-1831.	9.0	50
33	An Electrochemical Nonâ€Enzymatic Glucose Sensor Based on Ultrathin PdAg Singleâ€Crystalline Nanowires. ChemPlusChem, 2020, 85, 970-976.	2.8	7
34	Template-free Synthesis of Mesoporous and Crystalline Transition Metal Oxide Nanoplates with Abundant Surface Defects. Matter, 2020, 2, 1244-1259.	10.0	38
35	Surfactant Design Strategy for One-Pot Seedless Synthesis of Hollow Mesoporous AuAg Alloy Nanospheres. Journal of Physical Chemistry Letters, 2020, 11, 5777-5784.	4.6	28
36	Plasmonic mesoporous AuAg nanospheres with controllable nanostructures. Chemical Communications, 2020, 56, 9679-9682.	4.1	14

#	Article	IF	Citations
37	Hierarchically porous Cu/Zn bimetallic catalysts for highly selective CO2 electroreduction to liquid C2 products. Applied Catalysis B: Environmental, 2020, 269, 118800.	20.2	108
38	Fluorochromic polymer films containing ultrasmall silver nanoclusters. Nanotechnology, 2020, 31, 245703.	2.6	3
39	Highly efficient hydrogen production from hydrolysis of ammonia borane over nanostructured Cu@CuCoOx supported on graphene oxide. Journal of Hazardous Materials, 2020, 391, 122199.	12.4	63
40	Template-Assisted Self-Sulfuration Formation of MoS2 Nanosheets Embedded in Ordered Mesoporous Carbon for Lithium Storage. ACS Applied Energy Materials, 2019, 2, 6158-6162.	5.1	12
41	Oxidative nucleation and growth of Janus-type MnO _x –Ag and MnO _x –Agl nanoparticles. Nanoscale, 2019, 11, 15147-15155.	5.6	10
42	"Dual-Template―Directed Synthesis of Bowl-Shaped Mesoporous Platinum Nanostructures. Inorganic Chemistry, 2019, 58, 11195-11201.	4.0	11
43	A Polymer Solution To Prevent Nanoclustering and Improve the Selectivity of Metal Nanoparticles for Electrocatalytic CO ₂ Reduction. Angewandte Chemie - International Edition, 2019, 58, 15834-15840.	13.8	87
44	A Polymer Solution To Prevent Nanoclustering and Improve the Selectivity of Metal Nanoparticles for Electrocatalytic CO 2 Reduction. Angewandte Chemie, 2019, 131, 15981-15987.	2.0	29
45	Frontispiece: A Polymer Solution To Prevent Nanoclustering and Improve the Selectivity of Metal Nanoparticles for Electrocatalytic CO ₂ Reduction. Angewandte Chemie - International Edition, 2019, 58, .	13.8	1
46	Insights into Compositional and Structural Effects of Bimetallic Hollow Mesoporous Nanospheres toward Ethanol Oxidation Electrocatalysis. Journal of Physical Chemistry Letters, 2019, 10, 5490-5498.	4.6	38
47	Ternary Palladium–Boron–Phosphorus Alloy Mesoporous Nanospheres for Highly Efficient Electrocatalysis. ACS Nano, 2019, 13, 12052-12061.	14.6	108
48	Size-dependent synthesis and catalytic activities of trimetallic PdAgCu mesoporous nanospheres in ethanol electrooxidation. Chemical Science, 2019, 10, 1986-1993.	7.4	79
49	Crystalline Facet-Directed Generation Engineering of Ultrathin Platinum Nanodendrites. Journal of Physical Chemistry Letters, 2019, 10, 663-671.	4.6	49
50	Templated Growth of Crystalline Mesoporous Materials: From Soft/Hard Templates to Colloidal Templates. Frontiers in Chemistry, 2019, 7, 22.	3.6	82
51	Mesoporous gold nanospheres <i>via</i> thiolate–Au(<scp>i</scp>) intermediates. Chemical Science, 2019, 10, 6423-6430.	7.4	45
52	When ternary PdCuP alloys meet ultrathin nanowires: Synergic boosting of catalytic performance in ethanol electrooxidation. Applied Catalysis B: Environmental, 2019, 253, 271-277.	20.2	70
53	One-pot aqueous synthesis of ultrathin trimetallic PdPtCu nanosheets for the electrooxidation of alcohols. Green Chemistry, 2019, 21, 2367-2374.	9.0	68
54	Ultrathin PdAg single-crystalline nanowires enhance ethanol oxidation electrocatalysis. Applied Catalysis B: Environmental, 2019, 249, 116-125.	20.2	135

#	Article	IF	Citations
55	One-step fabrication of trimetallic core–shell Au@PdAuCu mesoporous nanospheres for ethanol electrooxidation. Green Chemistry, 2019, 21, 2043-2051.	9.0	46
56	Asymmetric Multimetallic Mesoporous Nanospheres. Nano Letters, 2019, 19, 3379-3385.	9.1	76
57	Frontispiz: A Polymer Solution To Prevent Nanoclustering and Improve the Selectivity of Metal Nanoparticles for Electrocatalytic CO ₂ Reduction. Angewandte Chemie, 2019, 131, .	2.0	0
58	Promoting Effect of Heterostructured NiO/Ni on Pt Nanocatalysts toward Catalytic Hydrolysis of Ammonia Borane. Journal of Physical Chemistry Letters, 2019, 10, 7374-7382.	4.6	65
59	Mesoporous palladium–boron alloy nanospheres. Journal of Materials Chemistry A, 2019, 7, 24877-24883.	10.3	52
60	Direct growth of ultrasmall bimetallic AuPd nanoparticles supported on nitrided carbon towards ethanol electrooxidation. Electrochimica Acta, 2018, 269, 441-451.	5.2	41
61	Ultrafine and Ligandâ€Free Precious Metal (Ru, Ag, Au, Rh and Pd) Nanoclusters Supported on Phosphorusâ€Doped Carbon. Chemistry - A European Journal, 2018, 24, 2565-2569.	3.3	30
62	Coâ€Template Directed Synthesis of Gold Nanoparticles in Mesoporous Titanium Dioxide. Chemistry - A European Journal, 2018, 24, 9651-9657.	3.3	18
63	Ultrathin palladium nanosheets with selectively controlled surface facets. Chemical Science, 2018, 9, 4451-4455.	7.4	89
64	Encapsulation of Metal Nanoparticle Catalysts Within Mesoporous Zeolites and Their Enhanced Catalytic Performances: A Review. Frontiers in Chemistry, 2018, 6, 550.	3.6	74
65	Multimetallic Hollow Mesoporous Nanospheres with Synergistically Structural and Compositional Effects for Highly Efficient Ethanol Electrooxidation. ACS Central Science, 2018, 4, 1412-1419.	11.3	109
66	Ultrasmall Ru Nanoclusters on Nitrogenâ€Enriched Hierarchically Porous Carbon Support as Remarkably Active Catalysts for Hydrolysis of Ammonia Borane. ChemCatChem, 2018, 10, 4910-4916.	3.7	30
67	Ultrathin PdPt bimetallic nanowires with enhanced electrocatalytic performance for hydrogen evolution reaction. Applied Catalysis B: Environmental, 2018, 238, 525-532.	20.2	111
68	Ultrasmall Au nanocatalysts supported on nitrided carbon for electrocatalytic CO ₂ reduction: the role of the carbon support in high selectivity. Nanoscale, 2018, 10, 14678-14686.	5.6	57
69	"Enzymatic―Photoreduction of Carbon Dioxide using Polymeric Metallofoldamers Containing Nickel–Thiolate Cofactors. ChemCatChem, 2017, 9, 1157-1162.	3.7	22
70	Au–Carbon Electronic Interaction Mediated Selective Oxidation of Styrene. ACS Catalysis, 2017, 7, 3483-3488.	11,2	92
71	Nanoengineering of aggregation-free and thermally-stable gold nanoparticles in mesoporous frameworks. Nanoscale, 2017, 9, 6380-6390.	5.6	24
72	Surface Engineering of Spherical Metal Nanoparticles with Polymers toward Selective Asymmetric Synthesis of Nanobowls and Janus†Type Dimers. Small, 2017, 13, 1700091.	10.0	31

#	Article	IF	Citations
73	Ultrafine Co-based Nanoparticle@Mesoporous Carbon Nanospheres toward High-Performance Supercapacitors. ACS Applied Materials & Supercapacitors.	8.0	69
74	Synthesis of Mesoporous CoS ₂ and Ni <i>>_x</i> Co _{1â€"<i>x</i>} S ₂ with Superior Supercapacitive Performance Using a Facile Solid-Phase Sulfurization. ACS Applied Materials & Diterfaces, 2017, 9, 36837-36848.	8.0	64
75	Engineering Surface Ligands of Noble Metal Nanocatalysts in Tuning the Product Selectivity. Catalysts, 2017, 7, 44.	3.5	50
76	Unconventional structural and morphological transitions of nanosheets, nanoflakes and nanorods of AuNP@MnO ₂ . Journal of Materials Chemistry A, 2016, 4, 6447-6455.	10.3	39
77	Electrocatalytic Oxidation of Alcohols, Tripropylamine, and DNA with Ligandâ€Free Gold Nanoclusters on Nitrided Carbon. ChemElectroChem, 2016, 3, 2100-2109.	3.4	12
78	Ligand-Free Noble Metal Nanocluster Catalysts on Carbon Supports via "Soft―Nitriding. Journal of the American Chemical Society, 2016, 138, 4718-4721.	13.7	204
79	A facile synthesis of Fe ₃ C@mesoporous carbon nitride nanospheres with superior electrocatalytic activity. Nanoscale, 2016, 8, 5441-5445.	5.6	53
80	Formation of hybrid core–shell microgels induced by autonomous unidirectional migration of nanoparticles. Materials Horizons, 2016, 3, 78-82.	12.2	14
81	Ligandâ€Assisted Coâ€Assembly Approach toward Mesoporous Hybrid Catalysts of Transitionâ€Metal Oxides and Noble Metals: Photochemical Water Splitting. Angewandte Chemie - International Edition, 2015, 54, 9061-9065.	13.8	66
82	Amphiphilic Hybrid Nano Building Blocks with Surfactant-Mimicking Structures. ACS Macro Letters, 2015, 4, 736-740.	4.8	24
83	Concurrent self-assembly of amphiphiles into nanoarchitectures with increasing complexity. Nano Today, 2015, 10, 278-300.	11.9	62
84	Colloidal Amphiphile-Templated Growth of Highly Crystalline Mesoporous Nonsiliceous Oxides. Chemistry of Materials, 2015, 27, 6173-6176.	6.7	30
85	Silica Biomineralization via the Selfâ€Assembly of Helical Biomolecules. Advanced Materials, 2015, 27, 479-497.	21.0	82
86	Growth of Optically Active Chiral Inorganic Films through DNA Self-Assembly and Silica Mineralisation. Scientific Reports, 2014, 4, 4866.	3.3	18
87	Silica mineralisation of DNA chiral packing: helicity control and formation mechanism of impeller-like DNA–silica helical architectures. Journal of Materials Chemistry B, 2013, 1, 2843.	5.8	17
88	Synthesis and characterization of multi-helical DNA–silica fibers. Chemical Communications, 2013, 49, 1097.	4.1	22
89	Templateâ€Assisted Selfâ€Assembly: Alignment, Placement, and Arrangement of Twoâ€Dimensional Mesostructured DNA–Silica Platelets. Angewandte Chemie - International Edition, 2013, 52, 14186-14190.	13.8	31
90	Waterâ€Dependent Optical Activity Inversion of Chiral DNA–Silica Assemblies. Chemistry - A European Journal, 2013, 19, 16382-16388.	3.3	6

#	Article	IF	CITATIONS
91	Formation of impeller-like helical DNA–silica complexes by polyamines induced chiral packing. Interface Focus, 2012, 2, 608-616.	3.0	17
92	DNAâ€"Silica Mineralization: The Formation of Exceptional Two Dimensional-Square <i>p</i> 4 <i>mm</i> Symmetry by a Structural Transformation. Chemistry of Materials, 2012, 24, 504-511.	6.7	19
93	Synthesis of chiral TiO2 nanofibre with electron transition-based optical activity. Nature Communications, 2012, 3, 1215.	12.8	149
94	Formation of Enantiomeric Impellerâ€Like Helical Architectures by DNA Selfâ€Assembly and Silica Mineralization. Angewandte Chemie - International Edition, 2012, 51, 923-927.	13.8	60