
Marta Szostak

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7805900/publications.pdf Version: 2024-02-01

MADTA SZOSTAK

#	Article	IF	CITATIONS
1	PlanetScope Imageries and LiDAR Point Clouds Processing for Automation Land Cover Mapping and Vegetation Assessment of a Reclaimed Sulfur Mine. Remote Sensing, 2021, 13, 2717.	4.0	7
2	Use of TanDEM-X and SRTM-C Data for Detection of Deforestation Caused by Bark Beetle in Central European Mountains. Remote Sensing, 2021, 13, 3042.	4.0	8
3	Automated Land Cover Change Detection and Forest Succession Monitoring Using LiDAR Point Clouds and GIS Analyses. Geosciences (Switzerland), 2020, 10, 321.	2.2	10
4	Reclaimed Area Land Cover Mapping Using Sentinel-2 Imagery and LiDAR Point Clouds. Remote Sensing, 2020, 12, 261.	4.0	15
5	Influence of the environmental factors on the species composition of lichen Scots pine forests as a guide to maintain the community (Bory Tucholskie National Park, Poland). Global Ecology and Conservation, 2020, 22, e01017.	2.1	7
6	Fusing Sentinel-2 Imagery and ALS Point Clouds for Defining LULC Changes on Reclaimed Areas by Afforestation. Sustainability, 2019, 11, 1251.	3.2	13
7	SECONDARY FOREST SUCCESSION DYNAMICS USING AIRBORNE LASER SCANNING POINT CLOUDS. , 2019, , .		0
8	LANDSCAPE MONITORING OF POST-INDUSTRIAL AREA USING LIDAR POINT CLOUDS AND SENTINEL-2 IMAGES. , 2019, , .		1
9	Using of Sentinel-2 images for automation of the forest succession detection. European Journal of Remote Sensing, 2018, 51, 142-149.	3.5	59
10	Estimating defoliation of Scots pine stands using machine learning methods and vegetation indices of Sentinel-2. European Journal of Remote Sensing, 2018, 51, 194-204.	3.5	81
11	Restoration of Vegetation in Relation to Soil Properties of Spoil Heap Heavily Contaminated with Heavy Metals. Water, Air, and Soil Pollution, 2018, 229, 392.	2.4	34
12	Forest cover changes in Gorce NP (Poland) using photointerpretation of analogue photographs and GEOBIA of orthophotos and nDSM based on image-matching based approach. European Journal of Remote Sensing, 2018, 51, 501-510.	3.5	8
13	Using airborne laser scanning data for automation land cover mapping in the aspect of monitoring forest succession areas. Geoinformatica Polonica, 2018, 17, 91-97.	0.1	1
14	ANALYSIS OF LAND USE AND LAND COVER CLASSES FOR THE AFFORESTED POST-MINE SITE USING SENTINEL-2 IMAGES. , 2018, , .		2
15	AUTOMATION IN THE ASSESSMENT OF FOREST SUCCESSION DYNAMICS USING AIRBORNE LASER SCANNING DATA. , 2018, , .		0
16	Spatial distribution and concentration of sulfur in relation to vegetation cover and soil properties on a reclaimed sulfur mine site (Southern Poland). Environmental Monitoring and Assessment, 2017, 189, 87.	2.7	30
17	Trophic conditions of forest soils of the Pieniny National Park, southern Poland. Soil Science Annual, 2017, 68, 205-211.	0.8	3
18	Using Geobia and Data Fusion Approach for Land use and Land Cover Mapping. Quaestiones Geographicae, 2016, 35, 93-104.	1.1	3

MARTA SZOSTAK

#	Article	IF	CITATIONS
19	Monitoring the Secondary Forest Succession and Land Cover/Use Changes of the BÅ,Ä™dów Desert (Poland) Using Geospatial Analyses. Quaestiones Geographicae, 2016, 35, 1-13.	1.1	9
20	Landscape monitoring of post-industrial areas using LiDAR and GIS technology. Geodesy and Cartography, 2015, 64, 125-137.	0.4	15
21	The analysis of spatial and temporal changes of land cover and land use in the reclaimed areas with the application of airborne orthophotomaps and LANDSAT images. Geodesy and Cartography, 2015, 64, 75-86.	0.4	8
22	Determination of the spatial structure of vegetation on the repository of the mine "Fryderyk―in Tarnowskie G³ry, based on airborne laser scanning from the ISOK project and digital orthophotomaps. Geodesy and Cartography, 2015, 64, 87-99.	0.4	6
23	A preliminary assessment of soil sulphur contamination and vegetations in the vicinity of former boreholes on the afforested post-mine site Jeziórko. Geology Geophysics & Environment, 2015, 41, 371.	1.0	14
24	Aerial Orthophoto and Airborne Laser Scanning as Monitoring Tools for Land Cover Dynamics: A Case Study from the Milicz Forest District (Poland). Pure and Applied Geophysics, 2014, 171, 857-866.	1.9	28
25	Use of Airborne Laser Scanning Data for a Revision and Update of a Digital Forest Map and its Descriptive Database: A Case Study from the Tatra National Park. Environmental Science and Engineering, 2013, , 615-627.	0.2	3