
Maider Zarrabeitia

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7805740/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Structure, Composition, Transport Properties, and Electrochemical Performance of the Electrodeâ€Electrolyte Interphase in Nonâ€Aqueous Naâ€Ion Batteries. Advanced Materials Interfaces, 2022, 9, .	1.9	27
2	Role of the voltage window on the capacity retention of P2-Na2/3[Fe1/2Mn1/2]O2 cathode material for rechargeable sodium-ion batteries. Communications Chemistry, 2022, 5, .	2.0	12
3	Stabilizing the Li _{1.3} Al _{0.3} Ti _{1.7} (PO ₄) ₃ Li Interface for High Efficiency and Long Lifespan Quasiâ€Solidâ€State Lithium Metal Batteries. ChemSusChem, 2022, 15, .	3.6	11
4	Polysiloxaneâ€Based Singleâ€Ion Conducting Polymer Blend Electrolyte Comprising Smallâ€Molecule Organic Carbonates for Highâ€Energy and Highâ€Power Lithiumâ€Metal Batteries. Advanced Energy Materials, 2022, 12, .	10.2	53
5	Influence of the Current Density on the Interfacial Reactivity of Layered Oxide Cathodes for Sodiumâ€lon Batteries. Energy Technology, 2022, 10, .	1.8	3
6	Investigation of a Fluorine-Free Phosphonium-Based Ionic Liquid Electrolyte and Its Compatibility with Lithium Metal. ACS Applied Materials & Interfaces, 2022, 14, 20888-20895.	4.0	4
7	Concentrated Electrolytes Enabling Stable Aqueous Ammoniumâ€ion Batteries. Advanced Materials, 2022, 34, .	11.1	40
8	Enhancing the Interfacial Stability of Highâ€Energy Si/Graphite LiNi _{0.88} Co _{0.09} Mn _{0.03} O ₂ Batteries Employing a Dualâ€Anion Ionic Liquidâ€based Electrolyte. Batteries and Supercaps, 2022, 5, .	2.4	3
9	Zinc″on Hybrid Supercapacitors Employing Acetateâ€Based Waterâ€inâ€Salt Electrolytes. Small, 2022, 18, .	5.2	22
10	Sodium manganese-rich layered oxides: Potential candidates as positive electrode for Sodium-ion batteries. Energy Storage Materials, 2021, 34, 682-707.	9.5	35
11	Nonfluorinated Ionic Liquid Electrolytes for Lithium Metal Batteries: Ionic Conduction, Electrochemistry, and Interphase Formation. Advanced Energy Materials, 2021, 11, 2003521.	10.2	37
12	Improved Sodiation Additive and Its Nuances in the Performance Enhancement of Sodium-Ion Batteries. ACS Applied Materials & Interfaces, 2021, 13, 11814-11821.	4.0	15
13	Understanding the electrode – electrolyte interphase of high voltage positive electrode Na4Co3(PO4)2P2O7 for rechargeable sodium-ion batteries. Electrochimica Acta, 2021, 372, 137846.	2.6	14
14	Assessing the Reactivity of Hard Carbon Anodes: Linking Material Properties with Electrochemical Response Upon Sodium―and Lithiumâ€Ion Storage. Batteries and Supercaps, 2021, 4, 960-977.	2.4	23
15	Highly Stable Quasiâ€Solidâ€State Lithium Metal Batteries: Reinforced Li _{1.3} Al _{0.3} Ti _{1.7} (PO ₄) ₃ /Li Interface by a Protection Interlayer. Advanced Energy Materials, 2021, 11, 2101339.	10.2	62
16	Enhanced Li ⁺ Transport in Ionic Liquidâ€Based Electrolytes Aided by Fluorinated Ethers for Highly Efficient Lithium Metal Batteries with Improved Rate Capability. Small Methods, 2021, 5, e2100168.	4.6	34
17	Lithium Phosphonate Functionalized Polymer Coating for Highâ€Energy Li[Ni _{0.8} Co _{0.1} Mn _{0.1}]O ₂ with Superior Performance at Ambient and Elevated Temperatures. Advanced Functional Materials, 2021, 31, 2105343.	7.8	42
18	Cathode–Electrolyte Interphase in a LiTFSI/Tetraglyme Electrolyte Promoting the Cyclability of V2O5. ACS Applied Materials & Interfaces, 2020, 12, 54782-54790.	4.0	12

MAIDER ZARRABEITIA

#	Article	IF	CITATIONS
19	Halide-free water-in-salt electrolytes for stable aqueous sodium-ion batteries. Nano Energy, 2020, 77, 105176.	8.2	46
20	<i>Operando</i> pH Measurements Decipher H ⁺ /Zn ²⁺ Intercalation Chemistry in High-Performance Aqueous Zn/Ĩ´-V ₂ O ₅ Batteries. ACS Energy Letters, 2020, 5, 2979-2986.	8.8	126
21	Gelified acetate-based water-in-salt electrolyte stabilizing hexacyanoferrate cathode for aqueous potassium-ion batteries. Energy Storage Materials, 2020, 30, 196-205.	9.5	46
22	Crystal engineering of TMPOx-coated LiNi0.5Mn1.5O4 cathodes for high-performance lithium-ion batteries. Materials Today, 2020, 39, 127-136.	8.3	37
23	Toward Stable Electrode/Electrolyte Interface of P2-Layered Oxide for Rechargeable Na-Ion Batteries. ACS Applied Materials & Interfaces, 2019, 11, 28885-28893.	4.0	35
24	Graphene as Vehicle for Ultrafast Lithium Ion Capacitor Development Based on Recycled Olive Pit Derived Carbons. Journal of the Electrochemical Society, 2019, 166, A2840-A2848.	1.3	11
25	Investigation of NaTiOPO ₄ as Anode for Sodium-Ion Batteries: A Solid Electrolyte Interphase Free Material?. ACS Applied Energy Materials, 2019, 2, 1923-1931.	2.5	18
26	Na ₄ Co ₃ (PO ₄) ₂ P ₂ O ₇ through Correlative <i>Operando</i> X-ray Diffraction and Electrochemical Impedance Spectroscopy. Chemistry of Materials, 2019, 31, 5152-5159.	3.2	24
27	Unraveling the role of Ti in the stability of positive layered oxide electrodes for rechargeable Na-ion batteries. Journal of Materials Chemistry A, 2019, 7, 14169-14179.	5.2	55
28	Toward Safe and Sustainable Batteries: Na ₄ Fe ₃ (PO ₄) ₂ P ₂ O ₇ as a Low-Cost Cathode for Rechargeable Aqueous Na-Ion Batteries. Journal of Physical Chemistry C, 2018, 122, 133-142.	1.5	58
29	Influence of Using Metallic Na on the Interfacial and Transport Properties of Na-Ion Batteries. Batteries, 2017, 3, 16.	2.1	17
30	Direct observation of electronic conductivity transitions and solid electrolyte interphase stability of Na2Ti3O7 electrodes for Na-ion batteries. Journal of Power Sources, 2016, 330, 78-83.	4.0	42
31	Towards environmentally friendly Na-ion batteries: Moisture and water stability of Na2Ti3O7. Journal of Power Sources, 2016, 324, 378-387.	4.0	39
32	Identification of the critical synthesis parameters for enhanced cycling stability of Na-ion anode material Na2Ti3O7. Acta Materialia, 2016, 104, 125-130.	3.8	27
33	Structure of H ₂ Ti ₃ O ₇ and its evolution during sodium insertion as anode for Na ion batteries. Physical Chemistry Chemical Physics, 2015, 17, 6988-6994.	1.3	46
34	Composition and Evolution of the Solid-Electrolyte Interphase in Na ₂ Ti ₃ O ₇ Electrodes for Na-Ion Batteries: XPS and Auger Parameter Analysis. ACS Applied Materials & Interfaces, 2015, 7, 7801-7808.	4.0	164