Halina Anton

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/7805584/halina-anton-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

13 408 9 13 g-index

13 487 7.7 3.16 ext. papers ext. citations avg, IF L-index

#	Paper	IF	Citations
13	Imaging Viral Infection by Fluorescence Microscopy: Focus on HIV-1 Early Stage. Viruses, 2021 , 13,	6.2	5
12	Zinc Fingers in HIV-1 Gag Precursor Are Not Equivalent for gRNA Recruitment at the Plasma Membrane. <i>Biophysical Journal</i> , 2020 , 119, 419-433	2.9	5
11	Quantitative monitoring of the cytoplasmic release of NCp7 proteins from individual HIV-1 viral cores during the early steps of infection. <i>Scientific Reports</i> , 2019 , 9, 945	4.9	5
10	Optimizing the Fluorescence Properties of Nanoemulsions for Single Particle Tracking in Live Cells. <i>ACS Applied Materials & District M</i>	9.5	12
9	MemBright: A Family of Fluorescent Membrane Probes for Advanced Cellular Imaging and Neuroscience. <i>Cell Chemical Biology</i> , 2019 , 26, 600-614.e7	8.2	74
8	Magnetite- and Iodine-Containing Nanoemulsion as a Dual Modal Contrast Agent for X-ray/Magnetic Resonance Imaging. <i>ACS Applied Materials & Dual Modal Contrast Agent for Magnetic Resonance Imaging ACS Applied Materials & Dual Modal Contrast Agent for X-ray/Magnetic Resonance Imaging ACS Applied Materials & Dual Modal Contrast Agent for X-ray/Magnetic Resonance Imaging Dual Materials & Dual Modal Contrast Agent for X-ray/Magnetic Resonance Imaging Dual Modal Contrast </i>	9.5	15
7	ReAsH/tetracystein-based correlative light-electron microscopy for HIV-1 imaging during the early stages of infection. <i>Methods and Applications in Fluorescence</i> , 2018 , 6, 045001	3.1	3
6	Light-triggered release from dye-loaded fluorescent lipid nanocarriers in vitro and in vivo. <i>Colloids and Surfaces B: Biointerfaces</i> , 2017 , 156, 414-421	6	13
5	Investigating the cellular distribution and interactions of HIV-1 nucleocapsid protein by quantitative fluorescence microscopy. <i>PLoS ONE</i> , 2015 , 10, e0116921	3.7	16
4	Counterion-enhanced cyanine dye loading into lipid nano-droplets for single-particle tracking in zebrafish. <i>Biomaterials</i> , 2014 , 35, 4950-7	15.6	47
3	Poly-Etaprolactone tungsten oxide nanoparticles as a contrast agent for X-ray computed tomography. <i>Biomaterials</i> , 2014 , 35, 2981-6	15.6	53
2	Biodistribution of X-ray iodinated contrast agent in nano-emulsions is controlled by the chemical nature of the oily core. <i>ACS Nano</i> , 2014 , 8, 10537-50	16.7	53
1	Highly lipophilic fluorescent dyes in nano-emulsions: towards bright non-leaking nano-droplets. <i>RSC Advances</i> , 2012 , 2, 11876-11886	3.7	107