
Arnaud Brayard

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7805479/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Paris Biota decapod (Arthropoda) fauna and the diversity of Triassic decapods. Journal of Paleontology, 2022, 96, 1235-1263.	0.5	2
2	A Changhsingian (late Permian) nautiloid assemblage from Gujiao, South China. Papers in Palaeontology, 2021, 7, 329-351.	0.7	1
3	Latest Smithian (Early Triassic) ammonoid assemblages in Utah (western USA basin) and their implications for regional biostratigraphy, biogeography and placement of the Smithian/Spathian boundary. Geobios, 2021, 69, 1-23.	0.7	2
4	Calibrating the late Smithian (Early Triassic) crisis: New insights from the Nanpanjiang Basin, South China. Global and Planetary Change, 2021, 201, 103492.	1.6	8
5	Exceptional fossil assemblages confirm the existence of complex Early Triassic ecosystems during the early Spathian. Scientific Reports, 2021, 11, 19657.	1.6	12
6	New middle and late Smithian ammonoid faunas from the Utah/Arizona border: New evidence for calibrating Early Triassic transgressive-regressive trends and paleobiogeographical signals in the western USA basin. Global and Planetary Change, 2020, 192, 103251.	1.6	5
7	Biological Soil Crusts as Modern Analogs for the Archean Continental Biosphere: Insights from Carbon and Nitrogen Isotopes. Astrobiology, 2020, 20, 815-819.	1.5	5
8	Smithian (Early Triassic) ammonoid faunas from Timor: taxonomy and biochronology. Palaeontographica, Abteilung A: Palaozoologie - Stratigraphie, 2020, 317, 1-137.	1.5	8
9	The lacustrine microbial carbonate factory of the successive Lake Bonneville and Great Salt Lake, Utah, <scp>USA</scp> . Sedimentology, 2019, 66, 165-204.	1.6	33
10	Multiple sulfur isotope signals associated with the late Smithian event and the Smithian/Spathian boundary. Earth-Science Reviews, 2019, 195, 96-113.	4.0	25
11	Foreword for the thematic issue "The Paris Biota (Bear Lake County, Idaho, USA): an exceptional window on the Early Triassic marine life― Geobios, 2019, 54, 1-3.	0.7	1
12	Glow in the dark: Use of synchrotron μXRF trace elemental mapping and multispectral macro-imaging on fossils from the Paris Biota (Bear Lake County, Idaho, USA). Geobios, 2019, 54, 71-79.	0.7	12
13	New thylacocephalans from the Early Triassic Paris Biota (Bear Lake County, Idaho, USA). Geobios, 2019, 54, 37-43.	0.7	13
14	A late-surviving Triassic protomonaxonid sponge from the Paris Biota (Bear Lake County, Idaho, USA). Geobios, 2019, 54, 5-11.	0.7	10
15	Ammonoids and nautiloids from the earliest Spathian Paris Biota and other early Spathian localities in southeastern Idaho, USA. Geobios, 2019, 54, 13-36.	0.7	18
16	Deciphering the exceptional preservation of the Early Triassic Paris Biota (Bear Lake County, Idaho,) Tj ETQq0 0 0	rgBT /Over	rlock 10 Tf 5

17A new holocrinid (Articulata) from the Paris Biota (Bear Lake County, Idaho, USA) highlights the high
diversity of Early Triassic crinoids. Geobios, 2019, 54, 45-53.0.711

A new brittle star (Ophiuroidea: Ophiodermatina) from the Early Triassic Paris Biota (Bear Lake) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 62

Arnaud Brayard

#	Article	IF	CITATIONS
19	Chondrichthyan teeth from the Early Triassic Paris Biota (Bear Lake County, Idaho, USA). Geobios, 2019, 54, 63-70.	0.7	9
20	The Smithian/Spathian boundary (late Early Triassic): A review of ammonoid, conodont, and carbon-isotopic criteria. Earth-Science Reviews, 2019, 195, 7-36.	4.0	62
21	Learning from beautiful monsters: phylogenetic and morphogenetic implications of left-right asymmetry in ammonoid shells. BMC Evolutionary Biology, 2019, 19, 210.	3.2	3
22	A new Griesbachian–Dienerian (Induan, Early Triassic) ammonoid fauna from Gujiao, South China. Journal of Paleontology, 2019, 93, 48-71.	0.5	10
23	The Indosinian orogeny: A perspective from sedimentary archives of north Vietnam. Journal of Asian Earth Sciences, 2018, 158, 352-380.	1.0	36
24	Late Smithian microbial deposits and their lateral marine fossiliferous limestones (Early Triassic,) Tj ETQq0 0 0 rg	gBT /Overl	ock 10 Tf 50 5
25	Controlling factors for differential subsidence in the Sonoma Foreland Basin (Early Triassic, western) Tj ETQq1 1	0.784314 0.9	4 rgBT /Overlo
26	Superstesaster promissor gen. et sp. nov., a new starfish (Echinodermata, Asteroidea) from the Early Triassic of Utah, USA, filling a major gap in the phylogeny of asteroids. Journal of Systematic Palaeontology, 2018, 16, 395-415.	0.6	16
27	Early Triassic environmental dynamics and microbial development during the Smithian–Spathian transition (Lower Weber Canyon, Utah, USA). Sedimentary Geology, 2018, 363, 136-151.	1.0	15
28	Palaeobiogeographical distribution of Smithian (Early Triassic) ammonoid faunas within the western <scp>USA</scp> basin and its controlling parameters. Palaeontology, 2018, 61, 881-904.	1.0	14
29	The Rapoport effect and the climatic variability hypothesis in Early Jurassic ammonites. Palaeontology, 2018, 61, 963-980.	1.0	5
30	Reproductive strategy as a piece of the biogeographic puzzle: a case study using Antarctic sea stars (Echinodermata, Asteroidea). Journal of Biogeography, 2017, 44, 848-860.	1.4	20
31	Unexpected Early Triassic marine ecosystem and the rise of the Modern evolutionary fauna. Science Advances, 2017, 3, e1602159.	4.7	103
32	Early Triassic fluctuations of the global carbon cycle: New evidence from paired carbon isotopes in the western USA basin. Global and Planetary Change, 2017, 154, 10-22.	1.6	22
33	Phylogenetic conservatism of species range size is the combined outcome of phylogeny and environmental stability. Journal of Biogeography, 2017, 44, 2451-2462.	1.4	14
34	Smithian ammonoid faunas from northeastern Nevada: implications for Early Triassic biostratigraphy and correlation within the western USA basin. Palaeontographica, Abteilung A: Palaozoologie - Stratigraphie, 2017, 309, 1-89.	1.5	14
35	Linking the distribution of microbial deposits from the Great Salt Lake (Utah, USA) to tectonic and climatic processes. Biogeosciences, 2016, 13, 5511-5526.	1.3	41
36	A diagenetic control on the Early Triassic Smithian–Spathian carbon isotopic excursions recorded in the marine settings of the Thaynes Group (Utah, USA). Geobiology, 2016, 14, 220-236.	1.1	29

ARNAUD BRAYARD

#	Article	IF	CITATIONS
37	Revised stratigraphic range of the Toarcian ammonite genusPorpocerasBuckman, 1911. Geodiversitas, 2016, 38, 505-513.	0.2	5
38	<i>Proteroctopus ribeti</i> in coleoid evolution. Palaeontology, 2016, 59, 767-773.	1.0	17
39	Gauging scale effects and biogeographical signals in similarity distance decay analyses: an Early Jurassic ammonite case study. Palaeontology, 2016, 59, 671-687.	1.0	12
40	Revision of the genus <i>Anasibirites</i> Mojsisovics (Ammonoidea): an iconic and cosmopolitan taxon of the late Smithian (Early Triassic) extinction. Papers in Palaeontology, 2016, 2, 155-188.	0.7	29
41	Enhanced development of lacustrine microbialites on gravity flow deposits, Great Salt Lake, Utah, USA. Sedimentary Geology, 2016, 341, 1-12.	1.0	16
42	External controls on the distribution, fabrics and mineralization of modern microbial mats in a coastal hypersaline lagoon, Cayo Coco (Cuba). Sedimentology, 2016, 63, 972-1016.	1.6	35
43	Permian– <scp>T</scp> riassic <scp>O</scp> steichthyes (bony fishes): diversity dynamics and body size evolution. Biological Reviews, 2016, 91, 106-147.	4.7	88
44	Evolution of depositional settings in the Torrey area during the Smithian (Early Triassic, Utah, USA) and their significance for the biotic recovery. Geological Journal, 2016, 51, 600-626.	0.6	15
45	Gladius-bearing coleoids from the Upper Cretaceous Lebanese LagerstÃ t ten: diversity, morphology, and phylogenetic implications. Journal of Paleontology, 2015, 89, 148-167.	0.5	20
46	Ammonoids and Quantitative Biochronology—A Unitary Association Perspective. Topics in Geobiology, 2015, , 277-298.	0.6	16
47	Biostratigraphy of Triassic Ammonoids. Topics in Geobiology, 2015, , 329-388.	0.6	30
48	Permian-Triassic Extinctions and Rediversifications. Topics in Geobiology, 2015, , 465-473.	0.6	23
49	Evolutionary Trends of Triassic Ammonoids. Topics in Geobiology, 2015, , 25-50.	0.6	4
50	Biogeography of Triassic Ammonoids. Topics in Geobiology, 2015, , 163-187.	0.6	10
51	Early Triassic Gulliver gastropods: Spatio-temporal distribution and significance for biotic recovery after the end-Permian mass extinction. Earth-Science Reviews, 2015, 146, 31-64.	4.0	37
52	Microbial deposits in the aftermath of the endâ€Permian mass extinction: A diverging case from the Mineral Mountains (Utah, <scp>USA</scp>). Sedimentology, 2015, 62, 753-792.	1.6	49
53	High-resolution biochronology and diversity dynamics of the Early Triassic ammonoid recovery: The Dienerian faunas of the Northern Indian Margin. Palaeogeography, Palaeoclimatology, Palaeoecology, 2015, 440, 363-373.	1.0	42
			_

54 Smithian shoreline migrations and depositional settings in Timpoweap Canyon (Early Triassic, Utah,) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 5

Arnaud Brayard

#	Article	IF	CITATIONS
55	Recovery of benthic marine communities from the endâ€ <scp>P</scp> ermian mass extinction at the low latitudes of eastern <scp>P</scp> anthalassa. Palaeontology, 2014, 57, 547-589.	1.0	83
56	Palaeobiogeography of Austral echinoid faunas: a first quantitative approach. Geological Society Special Publication, 2013, 381, 117-127.	0.8	8
57	Smithian ammonoid faunas from Utah: implications for Early Triassic biostratigraphy, correlation and basinal paleogeography. Swiss Journal of Palaeontology, 2013, 132, 141-219.	0.7	52
58	Untangling phylogenetic, geometric and ornamental imprints on Early Triassic ammonoid biogeography: a similarity-distance decay study. Lethaia, 2013, 46, 19-33.	0.6	12
59	Comparative biogeography of echinoids, bivalves and gastropods from the <scp>S</scp> outhern <scp>O</scp> cean. Journal of Biogeography, 2013, 40, 1374-1385.	1.4	24
60	Comment on "Lethally Hot Temperatures During the Early Triassic Greenhouse". Science, 2013, 339, 1033-1033.	6.0	23
61	Ammonoid recovery after the Permian–Triassic mass extinction: a re-exploration of morphological and phylogenetic diversity patterns. Journal of the Geological Society, 2013, 170, 225-236.	0.9	36
62	<i>Globacrochordiceras</i> gen. nov. (Acrochordiceratidae, late Early Triassic) and its significance for stress-induced evolutionary jumps in ammonoid lineages (cephalopods). Fossil Record, 2013, 16, 197-215.	0.4	7
63	Early Triassic conodont clusters from South China: revision of the architecture of the 15 element apparatuses of the superfamily Gondolelloidea. Palaeontology, 2012, 55, 1021-1034.	1.0	57
64	Transient metazoan reefs in the aftermath of the end-Permian mass extinction. Nature Geoscience, 2011, 4, 693-697.	5.4	122
65	Biodiversity is not (and never has been) a bed of roses!. Comptes Rendus - Biologies, 2011, 334, 351-359.	0.1	33
66	Ammonite paleobiogeography during the Pliensbachian–Toarcian crisis (Early Jurassic) reflecting paleoclimate, eustasy, and extinctions. Global and Planetary Change, 2011, 78, 92-105.	1.6	99
67	Gastropod evidence against the Early Triassic Lilliput effect: REPLY. Geology, 2011, 39, e233-e233.	2.0	10
68	Gastropod evidence against the Early Triassic Lilliput effect. Geology, 2010, 38, 147-150.	2.0	71
69	High-resolution biochronology and diversity dynamics of the Early Triassic ammonoid recovery: The Smithian faunas of the Northern Indian Margin. Palaeogeography, Palaeoclimatology, Palaeoecology, 2010, 297, 491-501.	1.0	69
70	Good Genes and Good Luck: Ammonoid Diversity and the End-Permian Mass Extinction. Science, 2009, 325, 1118-1121.	6.0	241
71	<i>GUODUNITES</i> , A LOWâ€PALAEOLATITUDE AND TRANSâ€PANTHALASSIC SMITHIAN (EARLY TRIASSIC) AMMONOID GENUS. Palaeontology, 2009, 52, 471-481.	1.0	27
72	Les AmmonoÃ⁻des (Mollusca, Cephalopoda)Â: avancées et contributions récentes à la paléobiologie évolutive. Comptes Rendus - Palevol, 2009, 8, 167-178.	0.1	9

ARNAUD BRAYARD

#	Article	IF	CITATIONS
73	Smithian and Spathian (Early Triassic) ammonoid assemblages from terranes: Paleoceanographic and paleogeographic implications. Journal of Asian Earth Sciences, 2009, 36, 420-433.	1.0	59
74	Evolution of Early Triassic outer platform paleoenvironments in the Nanpanjiang Basin (South China) and their significance for the biotic recovery. Sedimentary Geology, 2008, 204, 36-60.	1.0	109
75	GRIESBACHIAN AND DIENERIAN (EARLY TRIASSIC) AMMONOID FAUNAS FROM NORTHWESTERN GUANGXI AND SOUTHERN GUIZHOU (SOUTH CHINA). Palaeontology, 2008, 51, 1151-1180.	1.0	44
76	Evolutionary rates do not drive latitudinal diversity gradients. Journal of Zoological Systematics and Evolutionary Research, 2008, 46, 82-86.	0.6	25
77	Smithian-Spathian boundary event: Evidence for global climatic change in the wake of the end-Permian biotic crisis. Geology, 2007, 35, 291.	2.0	199
78	Late Early Triassic climate change: Insights from carbonate carbon isotopes, sedimentary evolution and ammonoid paleobiogeography. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 243, 394-411.	1.0	132
79	Timing of the Early Triassic carbon cycle perturbations inferred from new U–Pb ages and ammonoid biochronozones. Earth and Planetary Science Letters, 2007, 258, 593-604.	1.8	237
80	<i>Proharpoceras</i> Chao: a new ammonoid lineage surviving the endâ€Permian mass extinction. Lethaia, 2007, 40, 175-181.	0.6	18
81	AMMONOID SHELL STRUCTURES OF PRIMARY ORGANIC COMPOSITION. Palaeontology, 2007, 50, 1463-1478.	1.0	33
82	The biogeography of Early Triassic ammonoid faunas: Clusters, gradients, and networks. Geobios, 2007, 40, 749-765.	0.7	83
83	New Early to Middle Triassic U–Pb ages from South China: Calibration with ammonoid biochronozones and implications for the timing of the Triassic biotic recovery. Earth and Planetary Science Letters, 2006, 243, 463-475.	1.8	212
84	The Early Triassic ammonoid recovery: Paleoclimatic significance of diversity gradients. Palaeogeography, Palaeoclimatology, Palaeoecology, 2006, 239, 374-395.	1.0	207
85	Latitudinal gradient of taxonomic richness: combined outcome of temperature and geographic mid-domains effects?. Journal of Zoological Systematics and Evolutionary Research, 2005, 43, 178-188.	0.6	80
86	An Early Triassic gladius associated with soft tissue remains from Idaho, USA—a squid-like coleoid cephalopod at the onset of Mesozoic Era. Acta Palaeontologica Polonica, 0, 63, .	0.4	17