Markus Stoffel

List of Publications by Citations

Source: https://exaly.com/author-pdf/7805438/markus-stoffel-publications-by-citations.pdf

Version: 2024-04-19

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

46 9,097 42 23 h-index g-index citations papers 5.66 46 18.3 10,219 avg, IF L-index ext. papers ext. citations

#	Paper	IF	Citations
42	Silencing of microRNAs in vivo with ZantagomirsZ <i>Nature</i> , 2005 , 438, 685-9	50.4	3298
41	A pancreatic islet-specific microRNA regulates insulin secretion. <i>Nature</i> , 2004 , 432, 226-30	50.4	1714
40	Mechanisms and optimization of in vivo delivery of lipophilic siRNAs. <i>Nature Biotechnology</i> , 2007 , 25, 1149-57	44.5	730
39	miR-375 maintains normal pancreatic alpha- and beta-cell mass. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2009 , 106, 5813-8	11.5	594
38	Assessing the ceRNA hypothesis with quantitative measurements of miRNA and target abundance. <i>Molecular Cell</i> , 2014 , 54, 766-76	17.6	45 ¹
37	Specificity, duplex degradation and subcellular localization of antagomirs. <i>Nucleic Acids Research</i> , 2007 , 35, 2885-92	20.1	390
36	Apolipoprotein M is required for prebeta-HDL formation and cholesterol efflux to HDL and protects against atherosclerosis. <i>Nature Medicine</i> , 2005 , 11, 418-22	50.5	258
35	Obesity-induced overexpression of miR-802 impairs glucose metabolism through silencing of Hnf1b. <i>Nature</i> , 2013 , 494, 111-5	50.4	257
34	Impact of MicroRNA Levels, Target-Site Complementarity, and Cooperativity on Competing Endogenous RNA-Regulated Gene Expression. <i>Molecular Cell</i> , 2016 , 64, 565-579	17.6	207
33	MicroRNA-7a regulates pancreatic Lell function. <i>Journal of Clinical Investigation</i> , 2014 , 124, 2722-35	15.9	193
32	The microRNA-200 family regulates pancreatic beta cell survival in type 2 diabetes. <i>Nature Medicine</i> , 2015 , 21, 619-27	50.5	183
31	Uptake and Function Studies of Maternal Milk-derived MicroRNAs. <i>Journal of Biological Chemistry</i> , 2015 , 290, 23680-91	5.4	106
30	miR-375 gene dosage in pancreatic Etells: implications for regulation of Etell mass and biomarker development. <i>Journal of Molecular Medicine</i> , 2015 , 93, 1159-69	5.5	90
29	MicroRNAs as stress regulators in pancreatic beta cells and diabetes. <i>Molecular Metabolism</i> , 2017 , 6, 1010-1023	8.8	89
28	Plasma levels of sphingosine-1-phosphate and apolipoprotein M in patients with monogenic disorders of HDL metabolism. <i>Atherosclerosis</i> , 2011 , 219, 855-63	3.1	83
27	Loss of microRNA-7a2 induces hypogonadotropic hypogonadism and infertility. <i>Journal of Clinical Investigation</i> , 2017 , 127, 1061-1074	15.9	57
26	Genetic dissection of the miR-200-Zeb1 axis reveals its importance in tumor differentiation and invasion. <i>Nature Communications</i> , 2018 , 9, 4671	17.4	57

(2021-2021)

25	In vivo adenine base editing of PCSK9 in macaques reduces LDL cholesterol levels. <i>Nature Biotechnology</i> , 2021 , 39, 949-957	44.5	50	
24	The multi-subunit GID/CTLH E3 ubiquitin ligase promotes cell proliferation and targets the transcription factor Hbp1 for degradation. <i>ELife</i> , 2018 , 7,	8.9	47	
23	The Lin28/let-7 axis is critical for myelination in the peripheral nervous system. <i>Nature Communications</i> , 2015 , 6, 8584	17.4	30	
22	Apolipoprotein M modulates erythrocyte efflux and tubular reabsorption of sphingosine-1-phosphate. <i>Journal of Lipid Research</i> , 2014 , 55, 1730-7	6.3	27	
21	Fas cell surface death receptor controls hepatic lipid metabolism by regulating mitochondrial function. <i>Nature Communications</i> , 2017 , 8, 480	17.4	27	
20	The RNA-binding protein vigilin regulates VLDL secretion through modulation of Apob mRNA translation. <i>Nature Communications</i> , 2016 , 7, 12848	17.4	25	
19	In vivo cytidine base editing of hepatocytes without detectable off-target mutations in RNA and DNA. <i>Nature Biomedical Engineering</i> , 2021 , 5, 179-189	19	20	
18	The Diabetes Gene JAZF1 Is Essential for the Homeostatic Control of Ribosome Biogenesis and Function in Metabolic Stress. <i>Cell Reports</i> , 2020 , 32, 107846	10.6	13	
17	The RNA-Binding Protein A1CF Regulates Hepatic Fructose and Glycerol Metabolism via Alternative RNA Splicing. <i>Cell Reports</i> , 2019 , 29, 283-300.e8	10.6	13	
16	Tmem27 dimerization, deglycosylation, plasma membrane depletion, and the extracellular Phe-Phe motif are negative regulators of cleavage by Bace2. <i>Biological Chemistry</i> , 2012 , 393, 473-84	4.5	12	
15	CDK8 Regulates Insulin Secretion and Mediates Postnatal and Stress-Induced Expression of Neuropeptides in Pancreatic ICells. <i>Cell Reports</i> , 2019 , 28, 2892-2904.e7	10.6	10	
14	Kin of IRRE-like Protein 2 Is a Phosphorylated Glycoprotein That Regulates Basal Insulin Secretion. Journal of Biological Chemistry, 2015 , 290, 25891-906	5.4	10	
13	Foxa1 is essential for development and functional integrity of the subthalamic nucleus. <i>Scientific Reports</i> , 2016 , 6, 38611	4.9	10	
12	Reply to Diet-responsive MicroRNAs Are Likely Exogenous. <i>Journal of Biological Chemistry</i> , 2015 , 290, 25198	5.4	8	
11	Automated assessment of Etell area and density per islet and patient using TMEM27 and BACE2 immunofluorescence staining in human pancreatic Etells. <i>PLoS ONE</i> , 2014 , 9, e98932	3.7	7	
10	The Long, the Short, and the Unstructured: A Unifying Model of miRNA Biogenesis. <i>Molecular Cell</i> , 2015 , 60, 4-6	17.6	5	
9	miR-802 regulates Paneth cell function and enterocyte differentiation in the mouse small intestine. <i>Nature Communications</i> , 2021 , 12, 3339	17.4	4	
8	High-Throughput Single-Cell Mass Spectrometry Reveals Abnormal Lipid Metabolism in Pancreatic Ductal Adenocarcinoma. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 24534-24542	16.4	4	

7	MicroRNA-7a2 Regulates Prolactin in Developing Lactotrophs and Prolactinoma Cells. <i>Endocrinology</i> , 2021 , 162,	4.8	3
6	miR-802 Suppresses Acinar-to-Ductal Reprogramming During Early Pancreatitis and Pancreatic Carcinogenesis. <i>Gastroenterology</i> , 2021 ,	13.3	3
5	SIK2 regulates insulin secretion. <i>Nature Cell Biology</i> , 2014 , 16, 210-2	23.4	2
4	Grainyhead 1 acts as a drug-inducible conserved transcriptional regulator linked to insulin signaling and lifespan <i>Nature Communications</i> , 2022 , 13, 107	17.4	2
3	Dysregulation of the Pdx1/Ovol2/Zeb2 axis in dedifferentiated Etells triggers the induction of genes associated with epithelial-mesenchymal transition in diabetes. <i>Molecular Metabolism</i> , 2021 , 53, 101248	8.8	2
2	Apolipoprotein M and Sphingosine-1-Phosphate Receptor 1 Promote the Transendothelial Transport of High-Density Lipoprotein. <i>Arteriosclerosis, Thrombosis, and Vascular Biology,</i> 2021 , 41, e468	- 2 479	1
1	The miR-200-Zeb1 axis regulates key aspects of Etell function and survival in vivo. <i>Molecular Metabolism</i> 2021, 53, 101267	8.8	О