
Markus Stoffel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7805438/publications.pdf Version: 2024-02-01

MADELIS STOFFE

#	Article	IF	CITATIONS
1	Silencing of microRNAs in vivo with â€~antagomirs'. Nature, 2005, 438, 685-689.	27.8	3,706
2	A pancreatic islet-specific microRNA regulates insulin secretion. Nature, 2004, 432, 226-230.	27.8	1,932
3	Mechanisms and optimization of in vivo delivery of lipophilic siRNAs. Nature Biotechnology, 2007, 25, 1149-1157.	17.5	854
4	<i>miR-375</i> maintains normal pancreatic α- and β-cell mass. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 5813-5818.	7.1	710
5	Assessing the ceRNA Hypothesis with Quantitative Measurements of miRNA and Target Abundance. Molecular Cell, 2014, 54, 766-776.	9.7	579
6	Specificity, duplex degradation and subcellular localization of antagomirs. Nucleic Acids Research, 2007, 35, 2885-2892.	14.5	433
7	Obesity-induced overexpression of miR-802 impairs glucose metabolism through silencing of Hnf1b. Nature, 2013, 494, 111-115.	27.8	304
8	Impact of MicroRNA Levels, Target-Site Complementarity, and Cooperativity on Competing Endogenous RNA-Regulated Gene Expression. Molecular Cell, 2016, 64, 565-579.	9.7	300
9	Apolipoprotein M is required for pre \hat{l}^2 -HDL formation and cholesterol efflux to HDL and protects against atherosclerosis. Nature Medicine, 2005, 11, 418-422.	30.7	276
10	MicroRNA-7a regulates pancreatic \hat{I}^2 cell function. Journal of Clinical Investigation, 2014, 124, 2722-2735.	8.2	251
11	The microRNA-200 family regulates pancreatic beta cell survival in type 2 diabetes. Nature Medicine, 2015, 21, 619-627.	30.7	236
12	In vivo adenine base editing of PCSK9 in macaques reduces LDL cholesterol levels. Nature Biotechnology, 2021, 39, 949-957.	17.5	196
13	Uptake and Function Studies of Maternal Milk-derived MicroRNAs. Journal of Biological Chemistry, 2015, 290, 23680-23691.	3.4	135
14	MicroRNAs as stress regulators in pancreatic beta cells and diabetes. Molecular Metabolism, 2017, 6, 1010-1023.	6.5	129
15	Genetic dissection of the miR-200–Zeb1 axis reveals its importance in tumor differentiation and invasion. Nature Communications, 2018, 9, 4671.	12.8	111
16	miR-375 gene dosage in pancreatic β-cells: implications for regulation of β-cell mass and biomarker development. Journal of Molecular Medicine, 2015, 93, 1159-1169.	3.9	104
17	Plasma levels of sphingosine-1-phosphate and apolipoprotein M in patients with monogenic disorders of HDL metabolism. Atherosclerosis, 2011, 219, 855-863.	0.8	87
18	Loss of microRNA-7a2 induces hypogonadotropic hypogonadism and infertility. Journal of Clinical Investigation, 2017, 127, 1061-1074.	8.2	83

MARKUS STOFFEL

#	Article	IF	CITATIONS
19	The multi-subunit GID/CTLH E3 ubiquitin ligase promotes cell proliferation and targets the transcription factor Hbp1 for degradation. ELife, 2018, 7, .	6.0	76
20	In vivo cytidine base editing of hepatocytes without detectable off-target mutations in RNA and DNA. Nature Biomedical Engineering, 2021, 5, 179-189.	22.5	62
21	Fas cell surface death receptor controls hepatic lipid metabolism by regulating mitochondrial function. Nature Communications, 2017, 8, 480.	12.8	40
22	The Lin28/let-7 axis is critical for myelination in the peripheral nervous system. Nature Communications, 2015, 6, 8584.	12.8	36
23	Apolipoprotein M modulates erythrocyte efflux and tubular reabsorption of sphingosine-1-phosphate. Journal of Lipid Research, 2014, 55, 1730-1737.	4.2	35
24	The RNA-Binding Protein A1CF Regulates Hepatic Fructose and Glycerol Metabolism via Alternative RNA Splicing. Cell Reports, 2019, 29, 283-300.e8.	6.4	35
25	The RNA-binding protein vigilin regulates VLDL secretion through modulation of Apob mRNA translation. Nature Communications, 2016, 7, 12848.	12.8	34
26	The Diabetes Gene JAZF1 Is Essential for the Homeostatic Control of Ribosome Biogenesis and Function in Metabolic Stress. Cell Reports, 2020, 32, 107846.	6.4	33
27	Highâ€Throughput Singleâ€Cell Mass Spectrometry Reveals Abnormal Lipid Metabolism in Pancreatic Ductal Adenocarcinoma. Angewandte Chemie - International Edition, 2021, 60, 24534-24542.	13.8	31
28	miR-802 Suppresses Acinar-to-Ductal Reprogramming During Early Pancreatitis and Pancreatic Carcinogenesis. Gastroenterology, 2022, 162, 269-284.	1.3	24
29	Therapeutic RNA-silencing oligonucleotides in metabolic diseases. Nature Reviews Drug Discovery, 2022, 21, 417-439.	46.4	24
30	Foxa1 is essential for development and functional integrity of the subthalamic nucleus. Scientific Reports, 2016, 6, 38611.	3.3	19
31	Kin of IRRE-like Protein 2 Is a Phosphorylated Glycoprotein That Regulates Basal Insulin Secretion. Journal of Biological Chemistry, 2015, 290, 25891-25906.	3.4	16
32	miR-802 regulates Paneth cell function and enterocyte differentiation in the mouse small intestine. Nature Communications, 2021, 12, 3339.	12.8	16
33	Tmem27 dimerization, deglycosylation, plasma membrane depletion, and the extracellular Phe-Phe motif are negative regulators of cleavage by Bace2. Biological Chemistry, 2012, 393, 473-484.	2.5	15
34	Dysregulation of the Pdx1/Ovol2/Zeb2 axis in dedifferentiated β-cells triggers the induction of genes associated with epithelial–mesenchymal transition in diabetes. Molecular Metabolism, 2021, 53, 101248.	6.5	14
35	CDK8 Regulates Insulin Secretion and Mediates Postnatal and Stress-Induced Expression of Neuropeptides in Pancreatic Î ² Cells. Cell Reports, 2019, 28, 2892-2904.e7.	6.4	13
36	Automated Assessment of β-Cell Area and Density per Islet and Patient Using TMEM27 and BACE2 Immunofluorescence Staining in Human Pancreatic β-Cells. PLoS ONE, 2014, 9, e98932.	2.5	11

MARKUS STOFFEL

#	Article	IF	CITATIONS
37	Reply to Diet-responsive MicroRNAs Are Likely Exogenous. Journal of Biological Chemistry, 2015, 290, 25198.	3.4	10
38	Apolipoprotein M and Sphingosine-1-Phosphate Receptor 1 Promote the Transendothelial Transport of High-Density Lipoprotein. Arteriosclerosis, Thrombosis, and Vascular Biology, 2021, 41, e468-e479.	2.4	10
39	MicroRNA-7a2 Regulates Prolactin in Developing Lactotrophs and Prolactinoma Cells. Endocrinology, 2021, 162, .	2.8	10
40	The miR-200–Zeb1 axis regulates key aspects of β-cell function and survival inÂvivo. Molecular Metabolism, 2021, 53, 101267.	6.5	9
41	SIK2 regulates insulin secretion. Nature Cell Biology, 2014, 16, 210-212.	10.3	6
42	The Long, the Short, and the Unstructured: A Unifying Model of miRNA Biogenesis. Molecular Cell, 2015, 60, 4-6.	9.7	5
43	Grainyhead 1 acts as a drug-inducible conserved transcriptional regulator linked to insulin signaling and lifespan. Nature Communications, 2022, 13, 107.	12.8	5