Sheng-Sheng Yu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7805427/publications.pdf

Version: 2024-02-01

15 papers	684	686830 13 h-index	940134 16 g-index
16 all docs	16 docs citations	16 times ranked	665 citing authors

#	Article	IF	CITATIONS
1	3D Printable and Subâ€Micrometer Porous Polymeric Monoliths with Shape Reconfiguration Ability by Miniemulsion Templating. Macromolecular Materials and Engineering, 2022, 307, 2100615.	1.7	2
2	3D Printing of Metal–Organic Framework-Based Ionogels: Wearable Sensors with Colorimetric and Mechanical Responses. ACS Applied Materials & Samp; Interfaces, 2022, 14, 28247-28257.	4.0	28
3	Cationic Cellulose Nanocrystals-Based Nanocomposite Hydrogels: Achieving 3D Printable Capacitive Sensors with High Transparency and Mechanical Strength. Polymers, 2021, 13, 688.	2.0	31
4	3D Printing of Thermal Insulating Polyimide/Cellulose Nanocrystal Composite Aerogels with Low Dimensional Shrinkage. Polymers, 2021, 13, 3614.	2.0	21
5	Efficient Visible-Light-Driven RAFT Polymerization Mediated by Deep Eutectic Solvents under an Open-to-Air Environment. Macromolecules, 2021, 54, 9825-9836.	2.2	15
6	Group 4 Metal-Based Metalâ€"Organic Frameworks for Chemical Sensors. Chemosensors, 2021, 9, 306.	1.8	29
7	The effect of temperature on the kinetics of enhanced amide bond formation from lactic acid and valine driven by deep eutectic solvents. Physical Chemistry Chemical Physics, 2021, 23, 27498-27507.	1.3	1
8	Ester-mediated peptide formation promoted by deep eutectic solvents: a facile pathway to proto-peptides. Chemical Communications, 2020, 56, 11949-11952.	2.2	6
9	3D Printable Strain Sensors from Deep Eutectic Solvents and Cellulose Nanocrystals. ACS Applied Materials & Samp; Interfaces, 2020, 12, 34235-34244.	4.0	105
10	Collision cross section predictions using 2-dimensional molecular descriptors. Chemical Communications, 2017, 53, 7624-7627.	2.2	42
11	Surveying the sequence diversity of model prebiotic peptides by mass spectrometry. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E7652-E7659.	3.3	51
12	Elongation of Model Prebiotic Proto-Peptides by Continuous Monomer Feeding. Macromolecules, 2017, 50, 9286-9294.	2.2	27
13	Kinetics of prebiotic depsipeptide formation from the ester–amide exchange reaction. Physical Chemistry Chemical Physics, 2016, 18, 28441-28450.	1.3	28
14	Esterâ€Mediated Amide Bond Formation Driven by Wet–Dry Cycles: A Possible Path to Polypeptides on the Prebiotic Earth. Angewandte Chemie - International Edition, 2015, 54, 9871-9875.	7.2	246
15	A Chemical Engineering Perspective on the Origins of Life. Processes, 2015, 3, 309-338.	1.3	16