Mohammed Elbadawi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7805334/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	M3DISEEN: A novel machine learning approach for predicting the 3D printability of medicines. International Journal of Pharmaceutics, 2020, 590, 119837.	2.6	131
2	Connected healthcare: Improving patient care using digital health technologies. Advanced Drug Delivery Reviews, 2021, 178, 113958.	6.6	110
3	Machine learning predicts 3D printing performance of over 900 drug delivery systems. Journal of Controlled Release, 2021, 337, 530-545.	4.8	89
4	Harnessing artificial intelligence for the next generation of 3D printed medicines. Advanced Drug Delivery Reviews, 2021, 175, 113805.	6.6	83
5	Advanced machine-learning techniques in drug discovery. Drug Discovery Today, 2021, 26, 769-777.	3.2	78
6	3D printing tablets: Predicting printability and drug dissolution from rheological data. International Journal of Pharmaceutics, 2020, 590, 119868.	2.6	75
7	Disrupting 3D printing of medicines with machine learning. Trends in Pharmacological Sciences, 2021, 42, 745-757.	4.0	62
8	Additive Manufacturable Materials for Electrochemical Biosensor Electrodes. Advanced Functional Materials, 2021, 31, 2006407.	7.8	58
9	Harnessing machine learning for development of microbiome therapeutics. Gut Microbes, 2021, 13, 1-20.	4.3	47
10	Advancing pharmacy and healthcare with virtual digital technologies. Advanced Drug Delivery Reviews, 2022, 182, 114098.	6.6	45
11	Electrochemical biosensors: a nexus for precision medicine. Drug Discovery Today, 2021, 26, 69-79.	3.2	40
12	Optical biosensors - Illuminating the path to personalized drug dosing. Biosensors and Bioelectronics, 2021, 188, 113331.	5.3	30
13	Machine Learning Uncovers Adverse Drug Effects on Intestinal Bacteria. Pharmaceutics, 2021, 13, 1026.	2.0	26
14	Machine Learning and Machine Vision Accelerate 3D Printed Orodispersible Film Development. Pharmaceutics, 2021, 13, 2187.	2.0	21
15	Rheological and Mechanical Investigation into the Effect of Different Molecular Weight Poly(ethylene glycol)s on Polycaprolactone-Ciprofloxacin Filaments. ACS Omega, 2019, 4, 5412-5423.	1.6	20
16	Machine Learning Predicts Drug Metabolism and Bioaccumulation by Intestinal Microbiota. Pharmaceutics, 2021, 13, 2001.	2.0	17
17	Porous hydroxyapatiteâ€bioactive glass hybrid scaffolds fabricated via ceramic honeycomb extrusion. Journal of the American Ceramic Society, 2018, 101, 3541-3556.	1.9	14
18	Machine learning to empower electrohydrodynamic processing. Materials Science and Engineering C, 2022, 132, 112553.	3.8	12

Mohammed Elbadawi

#	Article	IF	CITATIONS
19	Incorporation of HA into porous titanium to form Ti-HA biocomposite foams. Journal of the Mechanical Behavior of Biomedical Materials, 2019, 96, 193-203.	1.5	11
20	Bio-Inspired Climbing Robots in Wet Environments: Recent Trends in Adhesion Methods and Materials. , 2018, , .		9
21	High strength yttria-reinforced HA scaffolds fabricated via honeycomb ceramic extrusion. Journal of the Mechanical Behavior of Biomedical Materials, 2018, 77, 422-433.	1.5	8
22	Active Machine learning for formulation of precision probiotics. International Journal of Pharmaceutics, 2022, 616, 121568.	2.6	8
23	Current clinical translation of microbiome medicines. Trends in Pharmacological Sciences, 2022, 43, 281-292.	4.0	8
24	Machine learning predicts the effect of food on orally administered medicines. International Journal of Pharmaceutics, 2022, 611, 121329.	2.6	4
25	Porous hydroxyapatite scaffolds fabricated from nano-sized powder via honeycomb extrusion. Advanced Materials Letters, 2017, 8, 377-385.	0.3	3