
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7804521/publications.pdf Version: 2024-02-01

WELE HUANC

#	Article	IF	CITATIONS
1	RT‣AMP for rapid diagnosis of coronavirus SARSâ€CoVâ€2. Microbial Biotechnology, 2020, 13, 950-961.	4.2	408
2	Raman Microscopic Analysis of Single Microbial Cells. Analytical Chemistry, 2004, 76, 4452-4458.	6.5	371
3	Tracking heavy water (D ₂ O) incorporation for identifying and sorting active microbial cells. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E194-203.	7.1	359
4	Raman-FISH: combining stable-isotope Raman spectroscopy and fluorescence in situ hybridization for the single cell analysis of identity and function. Environmental Microbiology, 2007, 9, 1878-1889.	3.8	305
5	Biodegradation: Updating the Concepts of Control for Microbial Cleanup in Contaminated Aquifers. Environmental Science & Technology, 2015, 49, 7073-7081.	10.0	211
6	Shining Light on the Microbial World. Advances in Applied Microbiology, 2010, 70, 153-186.	2.4	185
7	Single cell Raman spectroscopy for cell sorting and imaging. Current Opinion in Biotechnology, 2012, 23, 56-63.	6.6	180
8	Single cell stable isotope probing in microbiology using Raman microspectroscopy. Current Opinion in Biotechnology, 2016, 41, 34-42.	6.6	174
9	Metabolic-Activity-Based Assessment of Antimicrobial Effects by D ₂ O-Labeled Single-Cell Raman Microspectroscopy. Analytical Chemistry, 2017, 89, 4108-4115.	6.5	129
10	Resolving Genetic Functions within Microbial Populations: In Situ Analyses Using rRNA and mRNA Stable Isotope Probing Coupled with Single-Cell Raman-Fluorescence In Situ Hybridization. Applied and Environmental Microbiology, 2009, 75, 234-241.	3.1	128
11	Raman-Activated Cell Sorting Based on Dielectrophoretic Single-Cell Trap and Release. Analytical Chemistry, 2015, 87, 2282-2289.	6.5	126
12	Quantitativein situassay of salicylic acid in tobacco leaves using a genetically modified biosensor strain ofAcinetobactersp. ADP1. Plant Journal, 2006, 46, 1073-1083.	5.7	115
13	Raman tweezers sorting of single microbial cells. Environmental Microbiology Reports, 2009, 1, 44-49.	2.4	115
14	Raman Activated Cell Ejection for Isolation of Single Cells. Analytical Chemistry, 2013, 85, 10697-10701.	6.5	105
15	Rapid resonance Raman microspectroscopy to probe carbon dioxide fixation by single cells in microbial communities. ISME Journal, 2012, 6, 875-885.	9.8	100
16	Chromosomally located gene fusions constructed in Acinetobacter sp. ADP1 for the detection of salicylate. Environmental Microbiology, 2005, 7, 1339-1348.	3.8	99
17	The urgent need for microbiology literacy in society. Environmental Microbiology, 2019, 21, 1513-1528.	3.8	99
18	Label-free, rapid and quantitative phenotyping of stress response in E. coli via ramanome. Scientific Reports, 2016, 6, 34359.	3.3	87

#	Article	IF	CITATIONS
19	Dissolved Oxygen Imaging in a Porous Medium to Investigate Biodegradation in a Plume with Limited Electron Acceptor Supply. Environmental Science & Technology, 2003, 37, 1905-1911.	10.0	85
20	Optimization of Bacterial Whole Cell Bioreporters for Toxicity Assay of Environmental Samples. Environmental Science & Technology, 2009, 43, 7931-7938.	10.0	84
21	Biofilm formation in environmental bacteria is influenced by different macromolecules depending on genus and species. Environmental Microbiology, 2010, 12, 2496-2507.	3.8	84
22	When single cell technology meets omics, the new toolbox of analytical biotechnology is emerging. Current Opinion in Biotechnology, 2012, 23, 1.	6.6	83
23	Raman activated cell sorting. Current Opinion in Chemical Biology, 2016, 33, 1-8.	6.1	83
24	Functionalization of wholeâ€cell bacterial reporters with magnetic nanoparticles. Microbial Biotechnology, 2011, 4, 89-97.	4.2	81
25	Magnetic nanoparticle-mediated isolation of functional bacteria in a complex microbial community. ISME Journal, 2015, 9, 603-614.	9.8	75
26	Physical modelling of solute transport in porous media: evaluation of an imaging technique using UV excited fluorescent dye. Water Research, 2002, 36, 1843-1853.	11.3	73
27	Wholeâ€cell bacterial bioreporter for actively searching and sensing of alkanes and oil spills. Microbial Biotechnology, 2012, 5, 87-97.	4.2	73
28	Biodegradation of phenolic compounds and their metabolites in contaminated groundwater using microbial fuel cells. Bioresource Technology, 2016, 200, 426-434.	9.6	73
29	Raman spectroscopy and machine learning for the classification of breast cancers. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2022, 264, 120300.	3.9	73
30	Reverse and Multiple Stable Isotope Probing to Study Bacterial Metabolism and Interactions at the Single Cell Level. Analytical Chemistry, 2016, 88, 9443-9450.	6.5	72
31	Singleâ€cell genomics based on Raman sorting reveals novel carotenoidâ€containing bacteria in the Red Sea. Microbial Biotechnology, 2017, 10, 125-137.	4.2	72
32	Whole cell bioreporter application for rapid detection and evaluation of crude oil spill in seawater caused by Dalian oil tank explosion. Water Research, 2013, 47, 1191-1200.	11.3	70
33	Raman-Deuterium Isotope Probing for in-situ identification of antimicrobial resistant bacteria in Thames River. Scientific Reports, 2017, 7, 16648.	3.3	69
34	Stable Isotope Probing and Raman Spectroscopy for Monitoring Carbon Flow in a Food Chain and Revealing Metabolic Pathway. Analytical Chemistry, 2013, 85, 1642-1649.	6.5	67
35	Quantitative dynamics of triacylglycerol accumulation in microalgae populations at single-cell resolution revealed by Raman microspectroscopy. Biotechnology for Biofuels, 2014, 7, 58.	6.2	67
36	Towards high-throughput microfluidic Raman-activated cell sorting. Analyst, The, 2015, 140, 6163-6174.	3.5	67

#	Article	IF	CITATIONS
37	Bacterial recombination promotes the evolution of multi-drug-resistance in functionally diverse populations. Proceedings of the Royal Society B: Biological Sciences, 2012, 279, 1477-1484.	2.6	64
38	Continuous cell sorting in a flow based on single cell resonance Raman spectra. Lab on A Chip, 2016, 16, 1420-1429.	6.0	62
39	Ramanâ€activated cell sorting and metagenomic sequencing revealing carbonâ€fixing bacteria in the ocean. Environmental Microbiology, 2018, 20, 2241-2255.	3.8	62
40	Ultrasound-mediated DNA transfer for bacteria. Nucleic Acids Research, 2007, 35, e129-e129.	14.5	60
41	A single-cell Raman-based platform to identify developmental stages of human pluripotent stem cell-derived neurons. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 18412-18423.	7.1	59
42	Raman Deuterium Isotope Probing Reveals Microbial Metabolism at the Single-Cell Level. Analytical Chemistry, 2017, 89, 13305-13312.	6.5	51
43	Raman spectroscopy provides a rapid, nonâ€invasive method for quantitation of starch in live, unicellular microalgae. Biotechnology Journal, 2014, 9, 1512-1518.	3.5	50
44	Surface-Enhanced Raman Spectroscopy for Identification of Heavy Metal Arsenic(V)-Mediated Enhancing Effect on Antibiotic Resistance. Analytical Chemistry, 2016, 88, 3164-3170.	6.5	50
45	Clinical Perspective of Antimicrobial Resistance in Bacteria. Infection and Drug Resistance, 2022, Volume 15, 735-746.	2.7	49
46	Raman–deuterium isotope probing to study metabolic activities of single bacterial cells in human intestinal microbiota. Microbial Biotechnology, 2020, 13, 572-583.	4.2	48
47	Development of a Fast Raman-Assisted Antibiotic Susceptibility Test (FRAST) for the Antibiotic Resistance Analysis of Clinical Urine and Blood Samples. Analytical Chemistry, 2021, 93, 5098-5106.	6.5	45
48	Application of a bacterial whole cell biosensor for the rapid detection of cytotoxicity in heavy metal contaminated seawater. Chemosphere, 2018, 200, 322-329.	8.2	44
49	Surface-Enhanced Raman Spectroscopy Combined with Stable Isotope Probing to Monitor Nitrogen Assimilation at Both Bulk and Single-Cell Level. Analytical Chemistry, 2017, 89, 5793-5800.	6.5	43
50	Single-Cell Raman Spectral Profiles of Pseudomonas fluorescens SBW25 Reflects in vitro and in planta Metabolic History. Microbial Ecology, 2007, 53, 414-425.	2.8	41
51	A whole-cell bioreporter approach for the genotoxicity assessment of bioavailability of toxic compounds in contaminated soil in China. Environmental Pollution, 2014, 195, 178-184.	7.5	40
52	Effect of Laser Irradiation on Cell Function and Its Implications in Raman Spectroscopy. Applied and Environmental Microbiology, 2018, 84, .	3.1	40
53	Rapid characterization of microbial biodegradation pathways by FT-IR spectroscopy. Journal of Microbiological Methods, 2006, 67, 273-280.	1.6	37
54	Agroinfiltration Reduces ABA Levels and Suppresses Pseudomonas syringae-Elicited Salicylic Acid Production in Nicotiana tabacum. PLoS ONE, 2010, 5, e8977.	2.5	37

#	Article	IF	CITATIONS
55	Raman-Activated Cell Counting for Profiling Carbon Dioxide Fixing Microorganisms. Journal of Physical Chemistry A, 2012, 116, 6560-6563.	2.5	36
56	Assessing the Ecotoxicologic Hazards of a Pandemic Influenza Medical Response. Environmental Health Perspectives, 2011, 119, 1084-1090.	6.0	33
57	New naphthalene whole-cell bioreporter for measuring and assessing naphthalene in polycyclic aromatic hydrocarbons contaminated site. Chemosphere, 2017, 186, 510-518.	8.2	33
58	Raman profiling of embryo culture medium to identify aneuploid and euploid embryos. Fertility and Sterility, 2019, 111, 753-762.e1.	1.0	33
59	Induction of Escherichia coli Into a VBNC State by Continuous-Flow UVC and Subsequent Changes in Metabolic Activity at the Single-Cell Level. Frontiers in Microbiology, 2018, 9, 2243.	3.5	32
60	Chromosome-free bacterial cells are safe and programmable platforms for synthetic biology. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 6752-6761.	7.1	32
61	Ramanâ€activated sorting of antibioticâ€resistant bacteria in human gut microbiota. Environmental Microbiology, 2020, 22, 2613-2624.	3.8	32
62	Unveiling Cancer Metabolism through Spontaneous and Coherent Raman Spectroscopy and Stable Isotope Probing. Cancers, 2021, 13, 1718.	3.7	32
63	Pseudomonas fluorescens SBW25 Biofilm and Planktonic Cells Have Differentiable Raman Spectral Profiles. Microbial Ecology, 2007, 53, 471-474.	2.8	30
64	Emerging Trends for Microbiome Analysis: From Single-Cell Functional Imaging to Microbiome Big Data. Engineering, 2017, 3, 66-70.	6.7	30
65	APPLICATION OF MAGNETIC NANOPARTICLES IN DRINKING WATER PURIFICATION. Environmental Engineering and Management Journal, 2014, 13, 2023-2029.	0.6	30
66	Use of a whole-cell bioreporter, Acinetobacter baylyi, to estimate the genotoxicity and bioavailability of chromium(VI)-contaminated soils. Biotechnology Letters, 2015, 37, 343-348.	2.2	29
67	Whole-cell bioreporters for evaluating petroleum hydrocarbon contamination. Critical Reviews in Environmental Science and Technology, 2021, 51, 272-322.	12.8	29
68	Characterizing the regulation of the <i>Pu</i> promoter in <i>Acinetobacter baylyi</i> ADP1. Environmental Microbiology, 2008, 10, 1668-1680.	3.8	27
69	Defensive Function of Transposable Elements in Bacteria. ACS Synthetic Biology, 2019, 8, 2141-2151.	3.8	27
70	A Culture-Independent Approach to Unravel Uncultured Bacteria and Functional Genes in a Complex Microbial Community. PLoS ONE, 2012, 7, e47530.	2.5	26
71	Label-Free Discrimination of Rhizobial Bacteroids and Mutants by Single-Cell Raman Microspectroscopy. Analytical Chemistry, 2017, 89, 6336-6340.	6.5	25
72	Development of SimCells as a novel chassis for functional biosensors. Scientific Reports, 2017, 7, 7261.	3.3	24

#	Article	IF	CITATIONS
73	Elevated intracellular cyclicâ€diâ€GMP level in <i>Shewanella oneidensis</i> increases expression of <i>c</i> â€type cytochromes. Microbial Biotechnology, 2020, 13, 1904-1916.	4.2	23
74	Development of a rapid test kit for SARS-CoV-2: an example of product design. Bio-Design and Manufacturing, 2020, 3, 83-86.	7.7	21
75	Clinical validation of optimised RT-LAMP for the diagnosis of SARS-CoV-2 infection. Scientific Reports, 2021, 11, 16193.	3.3	21
76	Single cell biotechnology to shed a light on biological â€ [~] dark matter' in nature. Microbial Biotechnology, 2015, 8, 15-16.	4.2	20
77	Monitoring Cr toxicity and remediation processes - combining a whole-cell bioreporter and Cr isotope techniques. Water Research, 2019, 153, 295-303.	11.3	20
78	Single-Cell and Time-Resolved Profiling of Intracellular <i>Salmonella</i> Metabolism in Primary Human Cells. Analytical Chemistry, 2019, 91, 7729-7737.	6.5	20
79	Fingerprinting Bacterial Metabolic Response to Erythromycin by Raman-Integrated Mid-Infrared Photothermal Microscopy. Analytical Chemistry, 2020, 92, 14459-14465.	6.5	20
80	Insight into pollutant bioavailability and toxicity using Raman confocal microscopy. Journal of Microbiological Methods, 2005, 60, 417-422.	1.6	17
81	Characterization and Modeling of Transcriptional Cross-Regulation in <i>Acinetobacter baylyi</i> ADP1. ACS Synthetic Biology, 2012, 1, 274-283.	3.8	17
82	Development of Aspirin-Inducible Biosensors in <i>Escherichia coli</i> and SimCells. Applied and Environmental Microbiology, 2019, 85, .	3.1	17
83	High-Speed Diagnosis of Bacterial Pathogens at the Single Cell Level by Raman Microspectroscopy with Machine Learning Filters and Denoising Autoencoders. ACS Chemical Biology, 2022, 17, 376-385.	3.4	17
84	A new approach to find biomarkers in chronic fatigue syndrome/myalgic encephalomyelitis (CFS/ME) by single-cell Raman micro-spectroscopy. Analyst, The, 2019, 144, 913-920.	3.5	16
85	Regulation and Characterization of Mutants of <i>fixABCX</i> in <i>Rhizobium leguminosarum</i> . Molecular Plant-Microbe Interactions, 2021, 34, 1167-1180.	2.6	14
86	Proteorhodopsin Overproduction Enhances the Long-Term Viability of Escherichia coli. Applied and Environmental Microbiology, 2019, 86, .	3.1	12
87	Isolation and Culture of Single Microbial Cells by Laser Ejection Sorting Technology. Applied and Environmental Microbiology, 2022, 88, AEM0116521.	3.1	12
88	Reprogramming Synthetic Cells for Targeted Cancer Therapy. ACS Synthetic Biology, 2022, 11, 1349-1360.	3.8	12
89	Construction of a bioreporter by heterogeneously expressing a Vibrio natriegens recA::luxCDABE fusion in Escherichia coli, and genotoxicity assessments of petrochemical-contaminated groundwater in northern China. Environmental Sciences: Processes and Impacts, 2016, 18, 751-759.	3.5	10
90	HipH Catalyzes the Hydroxylation of 4-Hydroxyisophthalate to Protocatechuate in 2,4-Xylenol Catabolism by Pseudomonas putida NCIMB 9866. Applied and Environmental Microbiology, 2016, 82, 724-731.	3.1	10

#	Article	IF	CITATIONS
91	Bacterial wax synthesis. Biotechnology Advances, 2021, 46, 107680.	11.7	10
92	Rational Design and Characterization of Nitric Oxide Biosensors in <i>E. coli</i> Nissle 1917 and Mini SimCells. ACS Synthetic Biology, 2021, 10, 2566-2578.	3.8	10
93	Single-Cell Raman Sorting. Methods in Molecular Biology, 2014, 1096, 147-153.	0.9	10
94	An efficient microalgal biomass harvesting method with a high concentration ratio using the polymer-surfactant aggregates process. Algal Research, 2018, 30, 86-93.	4.6	9
95	From macro to micro: a combined bioluminescenceâ€fluorescence approach to monitor bacterial localization. Environmental Microbiology, 2021, 23, 2070-2085.	3.8	9
96	In Vitro Anticancer Drug Sensitivity Sensing through Single-Cell Raman Spectroscopy. Biosensors, 2021, 11, 286.	4.7	9
97	FUNCTIONALIZATION AND IMMOBILIZATION OF WHOLE CELL BIOREPORTERS FOR THE DETECTION OF ENVIRONMENTAL CONTAMINATION. Environmental Engineering and Management Journal, 2013, 12, 1417-1422.	0.6	9
98	The influence of carbon sources on the expression of the recA gene and genotoxicity detection by an Acinetobacter bioreporter. Environmental Sciences: Processes and Impacts, 2015, 17, 835-843.	3.5	7
99	WHOLE CELL BIOREPORTER FOR THE ESTIMATION OF OIL CONTAMINATION. Environmental Engineering and Management Journal, 2013, 12, 1353-1358.	0.6	7
100	Enhanced biodegradation of petroleum hydrocarbons in polluted soil*. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2000, 35, 177-188.	1.7	6
101	UV-B radiation induced changes in litter quality affects earthworm growth and cast characteristics as determined by metabolic fingerprinting. Pedobiologia, 2003, 47, 784-787.	1.2	6
102	The Environmental Plasmid pQBR103 Alters the Single-Cell Raman Spectral Profile of Pseudomonas fluorescens SBW25. Microbial Ecology, 2007, 53, 494-497.	2.8	6
103	Bacterial Whole-Cell Biosensors for the Detection of Contaminants in Water and Soils. Methods in Molecular Biology, 2014, 1096, 155-168.	0.9	6
104	The <i>Synthetic Microbiology Caucus</i> : from abstract ideas to turning microbes into cellular machines and back. Microbial Biotechnology, 2019, 12, 5-7.	4.2	5
105	Understanding and mathematical modelling of cellular resource allocation in microorganisms: a comparative synthesis. BMC Bioinformatics, 2021, 22, 467.	2.6	5
106	Genetic engineering biofilms inÂsitu using ultrasoundâ€mediated DNA delivery. Microbial Biotechnology, 2021, 14, 1580-1593.	4.2	4
107	The use of chemical profiling for monitoring metabolic changes in artificial soil slurries caused by horizontal gene transfer. Metabolomics, 2006, 1, 305-315.	3.0	3
108	Consideration of Future Requirements for Raman Microbiology as an Examplar for the Ab Initio Development of Informatics Frameworks for Emergent OMICS Technologies. OMICS A Journal of Integrative Biology, 2006, 10, 238-241.	2.0	2

#	Article	IF	CITATIONS
109	Strategies to minimize preventable morbidity and mortality resulting from pandemics like COVID â€19. Environmental Microbiology, 2020, 22, 4085-4092.	3.8	2
110	Redesign of ultrasensitive and robust RecA gene circuit to sense DNA damage. Microbial Biotechnology, 2021, 14, 2481-2496.	4.2	2
111	A quantitative <scp>RTâ€qLAMP</scp> for the detection of <scp>SARSâ€CoV</scp> â€2 and human gene in clinical application. Microbial Biotechnology, 0, , .	4.2	2
112	Environmental microbiology in China. Environmental Microbiology, 2021, 23, 529-529.	3.8	0
113	Microbiology Biotechnology in China. Microbial Biotechnology, 2021, 14, 322-322.	4.2	0