MarÃ-a Pérez-Ortiz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7804496/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Consolidated Dataset and Metrics for High-Dynamic-Range Image Quality. IEEE Transactions on Multimedia, 2022, 24, 2125-2138.	5.2	7
2	From Pairwise Comparisons and Rating to a Unified Quality Scale. IEEE Transactions on Image Processing, 2020, 29, 1139-1151.	6.0	25
3	SUM'20: State-based User Modelling. , 2020, , .		3
4	Visibility Metric for Visually Lossless Image Compression. , 2019, , .		0
5	Luminance and chromatic contrast sensitivity at high light levels. Journal of Vision, 2019, 19, 70b.	0.1	1
6	Partial order label decomposition approaches for melanoma diagnosis. Applied Soft Computing Journal, 2018, 64, 341-355.	4.1	16
7	Validation of artificial neural networks as a methodology for donorâ€recipient matching for liver transplantation, 2018, 24, 192-203.	1.3	47
8	Psychometric scaling of TID2013 dataset. , 2018, , .		8
9	Trained Perceptual Transform for Quality Assessment of High Dynamic Range Images and Video. , 2018, ,		2
10	Dynamically weighted evolutionary ordinal neural network for solving an imbalanced liver transplantation problem. Artificial Intelligence in Medicine, 2017, 77, 1-11.	3.8	35
11	Synthetic semi-supervised learning in imbalanced domains: Constructing a model for donor-recipient matching in liver transplantation. Knowledge-Based Systems, 2017, 123, 75-87.	4.0	9
12	Fine-to-Coarse Ranking in Ordinal and Imbalanced Domains: An Application to Liver Transplantation. Lecture Notes in Computer Science, 2017, , 525-537.	1.0	1
13	An Iterated Greedy Algorithm for Improving the Generation of Synthetic Patterns in Imbalanced Learning. Lecture Notes in Computer Science, 2017, , 513-524.	1.0	1
14	Class Switching Ensembles for Ordinal Regression. Lecture Notes in Computer Science, 2017, , 408-419.	1.0	1
15	A Review of Classification Problems and Algorithms in Renewable Energy Applications. Energies, 2016, 9, 607.	1.6	87
16	Classification of Melanoma Presence and Thickness Based on Computational Image Analysis. Lecture Notes in Computer Science, 2016, , 427-438.	1.0	5
17	On the Use of Nominal and Ordinal Classifiers for the Discrimination of States of Development in Fish Oocytes. Neural Processing Letters, 2016, 44, 555-570.	2.0	4
18	Selecting patterns and features for between- and within- crop-row weed mapping using UAV-imagery. Expert Systems With Applications, 2016, 47, 85-94.	4.4	132

MarÃa Pérez-Ortiz

#	Article	IF	CITATIONS
19	A Study on Multi-Scale Kernel Optimisation via Centered Kernel-Target Alignment. Neural Processing Letters, 2016, 44, 491-517.	2.0	6
20	Oversampling the Minority Class in the Feature Space. IEEE Transactions on Neural Networks and Learning Systems, 2016, 27, 1947-1961.	7.2	53
21	Ordinal Regression Methods: Survey and Experimental Study. IEEE Transactions on Knowledge and Data Engineering, 2016, 28, 127-146.	4.0	300
22	Fisher Score-Based Feature Selection for Ordinal Classification: A Social Survey on Subjective Well-Being. Lecture Notes in Computer Science, 2016, , 597-608.	1.0	8
23	Ordinal Evolutionary Artificial Neural Networks for Solving an Imbalanced Liver Transplantation Problem. Lecture Notes in Computer Science, 2016, , 451-462.	1.0	2
24	Graph-Based Approaches for Over-Sampling in the Context of Ordinal Regression. IEEE Transactions on Knowledge and Data Engineering, 2015, 27, 1233-1245.	4.0	48
25	Kernelising the Proportional Odds Model through kernel learning techniques. Neurocomputing, 2015, 164, 23-33.	3.5	3
26	A semi-supervised system for weed mapping in sunflower crops using unmanned aerial vehicles and a crop row detection method. Applied Soft Computing Journal, 2015, 37, 533-544.	4.1	145
27	An Experimental Comparison for the Identification of Weeds in Sunflower Crops via Unmanned Aerial Vehicles and Object-Based Analysis. Lecture Notes in Computer Science, 2015, , 252-262.	1.0	4
28	Energy Flux Range Classification by Using a Dynamic Window Autoregressive Model. Lecture Notes in Computer Science, 2015, , 92-102.	1.0	1
29	An evolutionary neural system for incorporating expert knowledge into the UA-FLP. Neurocomputing, 2014, 135, 69-78.	3.5	13
30	Projection-Based Ensemble Learning for Ordinal Regression. IEEE Transactions on Cybernetics, 2014, 44, 681-694.	6.2	41
31	An organ allocation system for liver transplantation based on ordinal regression. Applied Soft Computing Journal, 2014, 14, 88-98.	4.1	37
32	Classification of EU countries' progress towards sustainable development based on ordinal regression techniques. Knowledge-Based Systems, 2014, 66, 178-189.	4.0	19
33	Time Series Segmentation and Statistical Characterisation of the Spanish Stock Market Ibex-35 Index. Lecture Notes in Computer Science, 2014, , 74-85.	1.0	0
34	Log-Gamma Distribution Optimisation via Maximum Likelihood for Ordered Probability Estimates. Lecture Notes in Computer Science, 2014, , 454-465.	1.0	1
35	Memetic Pareto differential evolutionary neural network used to solve an unbalanced liver transplantation problem. Soft Computing, 2013, 17, 275-284.	2.1	7
36	An Ordinal Regression Approach for the Unequal Area Facility Layout Problem. Advances in Intelligent Systems and Computing, 2013, , 13-21.	0.5	1

MarÃa Pérez-Ortiz

#	Article	IF	CITATIONS
37	An n-Spheres Based Synthetic Data Generator for Supervised Classification. Lecture Notes in Computer Science, 2013, , 613-621.	1.0	7
38	Kernelizing the Proportional Odds Model through the Empirical Kernel Mapping. Lecture Notes in Computer Science, 2013, , 270-279.	1.0	1
39	A System Learning User Preferences for Multiobjective Optimization of Facility Layouts. Advances in Intelligent Systems and Computing, 2013, , 43-52.	0.5	0
40	An ensemble approach for ordinal threshold models applied to liver transplantation. , 2012, , .		2
41	Hybrid Multi-objective Machine Learning Classification in Liver Transplantation. Lecture Notes in Computer Science, 2012, , 397-408.	1.0	0
42	An Experimental Study of Different Ordinal Regression Methods and Measures. Lecture Notes in Computer Science, 2012, , 296-307.	1.0	22
43	Ordinal classification of depression spatial hot-spots of prevalence. , 2011, , .		8