Klaus Müllen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/780430/publications.pdf

Version: 2024-02-01

556 papers 71,669 citations

125 h-index 250 g-index

575 all docs

575 docs citations

575 times ranked

48779 citing authors

#	Article	IF	CITATIONS
1	Transparent, Conductive Graphene Electrodes for Dye-Sensitized Solar Cells. Nano Letters, 2008, 8, 323-327.	9.1	4,164
2	Atomically precise bottom-up fabrication of graphene nanoribbons. Nature, 2010, 466, 470-473.	27.8	3,144
3	Graphenes as Potential Material for Electronics. Chemical Reviews, 2007, 107, 718-747.	47.7	2,480
4	Pyrene-Based Materials for Organic Electronics. Chemical Reviews, 2011, 111, 7260-7314.	47.7	1,312
5	Big Is Beautifulâ^"Aromaticity―Revisited from the Viewpoint of Macromolecular and Supramolecular Benzene Chemistry. Chemical Reviews, 2001, 101, 1267-1300.	47.7	1,286
6	Threeâ€Dimensional Nitrogen and Boron Coâ€doped Graphene for Highâ€Performance Allâ€Solidâ€State Supercapacitors. Advanced Materials, 2012, 24, 5130-5135.	21.0	1,270
7	New advances in nanographene chemistry. Chemical Society Reviews, 2015, 44, 6616-6643.	38.1	1,212
8	Exfoliation of Graphite into Graphene in Aqueous Solutions of Inorganic Salts. Journal of the American Chemical Society, 2014, 136, 6083-6091.	13.7	1,181
9	On-surface synthesis of graphene nanoribbons with zigzag edge topology. Nature, 2016, 531, 489-492.	27.8	1,154
10	Mesoporous Metal–Nitrogen-Doped Carbon Electrocatalysts for Highly Efficient Oxygen Reduction Reaction. Journal of the American Chemical Society, 2013, 135, 16002-16005.	13.7	1,119
11	Graphene-based in-plane micro-supercapacitors with high power and energy densities. Nature Communications, 2013, 4, 2487.	12.8	1,104
12	Bottom-Up Fabrication of Photoluminescent Graphene Quantum Dots with Uniform Morphology. Journal of the American Chemical Society, 2011, 133, 15221-15223.	13.7	794
13	From Nanographene and Graphene Nanoribbons to Graphene Sheets: Chemical Synthesis. Angewandte Chemie - International Edition, 2012, 51, 7640-7654.	13.8	725
14	Graphene as Transparent Electrode Material for Organic Electronics. Advanced Materials, 2011, 23, 2779-2795.	21.0	708
15	Designing π-conjugated polymers for organic electronics. Progress in Polymer Science, 2013, 38, 1832-1908.	24.7	698
16	Two-Dimensional Graphene Nanoribbons. Journal of the American Chemical Society, 2008, 130, 4216-4217.	13.7	695
17	Ultrahigh Mobility in Polymer Field-Effect Transistors by Design. Journal of the American Chemical Society, 2011, 133, 2605-2612.	13.7	671
18	Polyphenylene Nanostructures. Chemical Reviews, 1999, 99, 1747-1786.	47.7	636

#	Article	IF	Citations
19	Polyfluorenes with Polyphenylene Dendron Side Chains:Â Toward Non-Aggregating, Light-Emitting Polymers. Journal of the American Chemical Society, 2001, 123, 946-953.	13.7	617
20	Polyphenylene-Based Materials for Organic Photovoltaics. Chemical Reviews, 2010, 110, 6817-6855.	47.7	617
21	Porous graphenes: two-dimensional polymer synthesis with atomic precision. Chemical Communications, 2009, , 6919.	4.1	610
22	Transparent Carbon Films as Electrodes in Organic Solar Cells. Angewandte Chemie - International Edition, 2008, 47, 2990-2992.	13.8	598
23	Molecular metal–Nx centres in porous carbon for electrocatalytic hydrogen evolution. Nature Communications, 2015, 6, 7992.	12.8	575
24	The Rylene Colorant Familyâ€"Tailored Nanoemitters for Photonics Research and Applications. Angewandte Chemie - International Edition, 2010, 49, 9068-9093.	13.8	565
25	Towards high charge-carrier mobilities by rational design of the shape and periphery of discotics. Nature Materials, 2009, 8, 421-426.	27.5	555
26	Electrochemically Exfoliated Graphene as Solution-Processable, Highly Conductive Electrodes for Organic Electronics. ACS Nano, 2013, 7, 3598-3606.	14.6	532
27	Graphene nanoribbon heterojunctions. Nature Nanotechnology, 2014, 9, 896-900.	31.5	528
28	Design strategies for organic semiconductors beyond the molecular formula. Nature Chemistry, 2012, 4, 699-704.	13.6	498
29	Field-Effect Transistors Based on a Benzothiadiazoleâ `Cyclopentadithiophene Copolymer. Journal of the American Chemical Society, 2007, 129, 3472-3473.	13.7	485
30	Synthesis of structurally well-defined and liquid-phase-processable graphene nanoribbons. Nature Chemistry, 2014, 6, 126-132.	13.6	468
31	Electrochemistry, Spectroscopy and Electrogenerated Chemiluminescence of Perylene, Terrylene, and Quaterrylene Diimides in Aprotic Solution. Journal of the American Chemical Society, 1999, 121, 3513-3520.	13.7	453
32	Two-Dimensional Polymer Formation on Surfaces: Insight into the Roles of Precursor Mobility and Reactivity. Journal of the American Chemical Society, 2010, 132, 16669-16676.	13.7	449
33	Electronic Structure of Atomically Precise Graphene Nanoribbons. ACS Nano, 2012, 6, 6930-6935.	14.6	410
34	Title is missing!. Die Makromolekulare Chemie Rapid Communications, 1991, 12, 489-497.	1.1	408
35	The Influence of Morphology on Highâ€Performance Polymer Fieldâ€Effect Transistors. Advanced Materials, 2009, 21, 209-212.	21.0	401
36	Engineering of robust topological quantum phases in graphene nanoribbons. Nature, 2018, 560, 209-213.	27.8	397

#	Article	IF	CITATIONS
37	Surface-assisted cyclodehydrogenation provides a synthetic route towards easily processable and chemically tailored nanographenes. Nature Chemistry, 2011, 3, 61-67.	13.6	395
38	Ultraflexible Inâ€Plane Microâ€Supercapacitors by Direct Printing of Solutionâ€Processable Electrochemically Exfoliated Graphene. Advanced Materials, 2016, 28, 2217-2222.	21.0	366
39	Extremely efficient terahertz high-harmonic generation in graphene by hot Dirac fermions. Nature, 2018, 561, 507-511.	27.8	365
40	Liquid Crystalline Ordering and Charge Transport in Semiconducting Materials. Macromolecular Rapid Communications, 2009, 30, 1179-1202.	3.9	360
41	Influence of Alkyl Substituents on the Solution- and Surface-Organization of Hexa-peri-hexabenzocoronenes. Journal of the American Chemical Society, 2005, 127, 4286-4296.	13.7	357
42	Synthesis of a Giant 222 Carbon Graphite Sheet. Chemistry - A European Journal, 2002, 8, 1424-1429.	3.3	352
43	A bottom-up approach from molecular nanographenes to unconventional carbon materials. Journal of Materials Chemistry, 2008, 18, 1472.	6.7	330
44	Short-channel field-effect transistors with 9-atom and 13-atom wide graphene nanoribbons. Nature Communications, 2017, 8, 633.	12.8	312
45	Diodelike Current–Voltage Curves for a Single Molecule–Tunneling Spectroscopy with Submolecular Resolution of an Alkylated,peri-Condensed Hexabenzocoronene. Angewandte Chemie International Edition in English, 1995, 34, 1609-1611.	4.4	309
46	Superlubricity of graphene nanoribbons on gold surfaces. Science, 2016, 351, 957-961.	12.6	302
47	Toward Cove-Edged Low Band Gap Graphene Nanoribbons. Journal of the American Chemical Society, 2015, 137, 6097-6103.	13.7	299
48	Bottom-Up Fabrication of Sulfur-Doped Graphene Films Derived from Sulfur-Annulated Nanographene for Ultrahigh Volumetric Capacitance Micro-Supercapacitors. Journal of the American Chemical Society, 2017, 139, 4506-4512.	13.7	294
49	Alternating Stacked Grapheneâ€Conducting Polymer Compact Films with Ultrahigh Areal and Volumetric Capacitances for Highâ€Energy Microâ€Supercapacitors. Advanced Materials, 2015, 27, 4054-4061.	21.0	290
50	Layerâ€by‣ayer Assembled Heteroatomâ€Doped Graphene Films with Ultrahigh Volumetric Capacitance and Rate Capability for Microâ€Supercapacitors. Advanced Materials, 2014, 26, 4552-4558.	21.0	289
51	Organic Radical-Assisted Electrochemical Exfoliation for the Scalable Production of High-Quality Graphene. Journal of the American Chemical Society, 2015, 137, 13927-13932.	13.7	288
52	Large polycyclic aromatic hydrocarbons: Synthesis and discotic organization. Pure and Applied Chemistry, 2009, 81, 2203-2224.	1.9	281
53	On-Surface Synthesis of Rylene-Type Graphene Nanoribbons. Journal of the American Chemical Society, 2015, 137, 4022-4025.	13.7	278
54	Columnar mesophases of alkylated hexa-peri-hexabenzocoronenes with remarkably large phase widths. Advanced Materials, 1996, 8, 510-513.	21.0	276

#	Article	IF	Citations
55	On-Surface Synthesis and Characterization of 9-Atom Wide Armchair Graphene Nanoribbons. ACS Nano, 2017, 11, 1380-1388.	14.6	270
56	Water-soluble perylenediimides: design concepts and biological applications. Chemical Society Reviews, 2016, 45, 1513-1528.	38.1	255
57	Uniaxial Alignment of the Columnar Super-Structure of a Hexa (Alkyl) Hexa-peri-hexabenzocoronene on Untreated Glass by Simple Solution Processing. Journal of the American Chemical Society, 2003, 125, 1682-1683.	13.7	251
58	Stable radical anions generated from a porous perylenediimide metal-organic framework for boosting near-infrared photothermal conversion. Nature Communications, 2019, 10, 767.	12.8	247
59	Nanographenes as Active Components of Single-Molecule Electronics and How a Scanning Tunneling Microscope Puts Them To Work. Accounts of Chemical Research, 2008, 41, 511-520.	15.6	244
60	Giant Polycyclic Aromatic Hydrocarbons. Chemistry - A European Journal, 1998, 4, 2099-2109.	3.3	240
61	Synthesis and Self-Assembly of Functionalized Hexa-peri-hexabenzocoronenes. Chemistry - A European Journal, 2000, 6, 4327-4342.	3.3	240
62	Electrochemically Scalable Production of Fluorine-Modified Graphene for Flexible and High-Energy lonogel-Based Microsupercapacitors. Journal of the American Chemical Society, 2018, 140, 8198-8205.	13.7	240
63	Heteroatom-Doped Nanographenes with Structural Precision. Accounts of Chemical Research, 2019, 52, 2491-2505.	15.6	239
64	Improving polymer transistor performance via morphology control. Chemical Society Reviews, 2010, 39, 2372.	38.1	238
65	Dithieno[2,3â€×i>d;2′,3′â€×i>d′]benzo[1,2â€×i>b;4,5â€ <i>b</i> ′]dithiophene (DTBDT) as for Highâ€Performance, Solutionâ€Processed Organic Fieldâ€Effect Transistors. Advanced Materials, 2009, 21, 213-216.	s Semicon 21.0	nductor 237
66	Ultrathin Printable Graphene Supercapacitors with AC Lineâ€Filtering Performance. Advanced Materials, 2015, 27, 3669-3675.	21.0	237
67	Beyond perylene diimides: synthesis, assembly and function of higher rylene chromophores. Journal of Materials Chemistry C, 2014, 2, 1938-1956.	5.5	235
68	Magnetic edge states and coherent manipulation of graphene nanoribbons. Nature, 2018, 557, 691-695.	27.8	232
69	Graphene Nanoribbons by Chemists: Nanometerâ€Sized, Soluble, and Defectâ€Free. Angewandte Chemie - International Edition, 2011, 50, 2540-2543.	13.8	228
70	Precision synthesis versus bulk-scale fabrication of graphenes. Nature Reviews Chemistry, 2018, 2, .	30.2	228
71	Topological frustration induces unconventional magnetism in a nanographene. Nature Nanotechnology, 2020, 15, 22-28.	31.5	227
72	Intramolecular Charge-Transfer Tuning of Perylenes:  Spectroscopic Features and Performance in Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2007, 111, 15137-15140.	3.1	225

#	Article	IF	CITATIONS
73	A Waterâ€Soluble, NIRâ€Absorbing Quaterrylenediimide Chromophore for Photoacoustic Imaging and Efficient Photothermal Cancer Therapy. Angewandte Chemie - International Edition, 2019, 58, 1638-1642.	13.8	224
74	Organic Fieldâ€Effect Transistors based on Highly Ordered Single Polymer Fibers. Advanced Materials, 2012, 24, 417-420.	21.0	221
75	Synthesis and Self-Organization of Core-Extended Perylene Tetracarboxdiimides with Branched Alkyl Substituents. Chemistry of Materials, 2006, 18, 3715-3725.	6.7	219
76	Termini of Bottom-Up Fabricated Graphene Nanoribbons. Journal of the American Chemical Society, 2013, 135, 2060-2063.	13.7	214
77	Giant edge state splitting at atomically precise graphene zigzag edges. Nature Communications, 2016, 7, 11507.	12.8	207
78	Tuning the Columnar Organization of Discotic Polycyclic Aromatic Hydrocarbons. Advanced Materials, 2010, 22, 3634-3649.	21.0	200
79	25th Anniversary Article: Highâ€Mobility Hole and Electron Transport Conjugated Polymers: How Structure Defines Function. Advanced Materials, 2014, 26, 2119-2136.	21.0	199
80	An Investigation of Ï€â^Ï€ Packing in a Columnar Hexabenzocoronene by Fast Magic-Angle Spinning and Double-Quantum1H Solid-State NMR Spectroscopy. Journal of the American Chemical Society, 1999, 121, 6712-6718.	13.7	195
81	Multilayer stabilization for fabricating high-loading single-atom catalysts. Nature Communications, 2020, 11, 5892.	12.8	195
82	Patterning two-dimensional free-standing surfaces with mesoporous conducting polymers. Nature Communications, 2015, 6, 8817.	12.8	193
83	Liquid Crystalline Coronene Derivatives with Extraordinary Fluorescence Properties. Angewandte Chemie - International Edition, 1998, 37, 1434-1437.	13.8	190
84	Atomically precise edge chlorination of nanographenes and its application in graphene nanoribbons. Nature Communications, 2013, 4, 2646.	12.8	187
85	Structurally Defined Graphene Nanoribbons with High Lateral Extension. Journal of the American Chemical Society, 2012, 134, 18169-18172.	13.7	185
86	Synthesis of Large Polycyclic Aromatic Hydrocarbons:Â Variation of Size and Periphery. Journal of the American Chemical Society, 2000, 122, 7707-7717.	13.7	177
87	Benzoâ€Fused Double [7]Carbohelicene: Synthesis, Structures, and Physicochemical Properties. Angewandte Chemie - International Edition, 2017, 56, 3374-3378.	13.8	177
88	From Hexa-peri-hexabenzocoronene to"Superacenes― Angewandte Chemie International Edition in English, 1997, 36, 1604-1607.	4.4	173
89	Stackedâ€Layer Heterostructure Films of 2D Thiophene Nanosheets and Graphene for Highâ€Rate Allâ€Solidâ€State Pseudocapacitors with Enhanced Volumetric Capacitance. Advanced Materials, 2017, 29, 1602960.	21.0	173
90	Processing of giant graphene molecules by soft-landing mass spectrometry. Nature Materials, 2006, 5, 276-280.	27.5	172

#	Article	IF	Citations
91	Polythiophene:Perylene Diimide Solar Cells – the Impact of Alkylâ€Substitution on the Photovoltaic Performance. Advanced Energy Materials, 2011, 1, 297-302.	19.5	172
92	Intraribbon Heterojunction Formation in Ultranarrow Graphene Nanoribbons. ACS Nano, 2012, 6, 2020-2025.	14.6	169
93	Fluorescent Nanoparticle Delivered dsRNA Toward Genetic Control of Insect Pests. Advanced Materials, 2013, 25, 4580-4584.	21.0	169
94	Revealing competitive Forster-type resonance energy-transfer pathways in single bichromophoric molecules. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 13146-13151.	7.1	168
95	Relationship between Core Size, Side Chain Length, and the Supramolecular Organization of Polycyclic Aromatic Hydrocarbons. Chemistry of Materials, 2005, 17, 4296-4303.	6.7	168
96	Donor–Acceptor Polymers. Journal of the American Chemical Society, 2015, 137, 9503-9505.	13.7	166
97	Synthesis and Characterization of π-Extended Triangulene. Journal of the American Chemical Society, 2019, 141, 10621-10625.	13.7	165
98	Quaterrylenebis(dicarboximides). Angewandte Chemie International Edition in English, 1995, 34, 1323-1325.	4.4	161
99	Controlled Self-Assembly of Hexa-peri-hexabenzocoronenes in Solution. Journal of the American Chemical Society, 2004, 126, 11311-11321.	13.7	161
100	Graphene Nanoribbons: Onâ€Surface Synthesis and Integration into Electronic Devices. Advanced Materials, 2020, 32, e2001893.	21.0	156
101	Self-Assembly of Periodic Bicomponent Wires and Ribbons. Angewandte Chemie - International Edition, 2007, 46, 1814-1818.	13.8	155
102	Exciton-dominated optical response of ultra-narrow graphene nanoribbons. Nature Communications, 2014, 5, 4253.	12.8	155
103	Annularly Fused Hexapyrrolohexaazacoronenes: An Extended Ï€â€System with Multiple Interior Nitrogen Atoms Displays Stable Oxidation States. Angewandte Chemie - International Edition, 2007, 46, 5524-5527.	13.8	154
104	From Armchair to Zigzag Peripheries in Nanographenes. Journal of the American Chemical Society, 2006, 128, 9526-9534.	13.7	153
105	Evolution of Graphene Molecules: Structural and Functional Complexity as Driving Forces behind Nanoscience. ACS Nano, 2014, 8, 6531-6541.	14.6	152
106	Nanosized Molecular Propellers by Cyclodehydrogenation of Polyphenylene Dendrimers. Journal of the American Chemical Society, 2004, 126, 3139-3147.	13.7	151
107	Bottomâ€Up Synthesis of Chemically Precise Graphene Nanoribbons. Chemical Record, 2015, 15, 295-309.	5.8	151
108	Polyphenylene-type Emissive Materials: Poly(para-phenylene)s,Polyfluorenes, and Ladder Polymers. Advances in Polymer Science, 2006, , 1-82.	0.8	150

#	Article	IF	Citations
109	Thermodynamic picture of ultrafast charge transport in graphene. Nature Communications, 2015, 6, 7655.	12.8	147
110	Mobility Exceeding 10 cm ² /(V·s) in Donor–Acceptor Polymer Transistors with Band-like Charge Transport. Chemistry of Materials, 2016, 28, 420-424.	6.7	147
111	A Divergent Synthesis of Very Large Polyphenylene Dendrimers with Iridium(III) Cores: Molecular Size Effect on the Performance of Phosphorescent Organic Light-Emitting Diodes. Journal of the American Chemical Society, 2009, 131, 14329-14336.	13.7	144
112	Mesitylboron-Substituted Ladder-Type Pentaphenylenes: Charge-Transfer, Electronic Communication, and Sensing Properties. Journal of the American Chemical Society, 2008, 130, 12477-12484.	13.7	142
113	Polycyclic aromatic hydrocarbons in the graphene era. Science China Chemistry, 2019, 62, 1099-1144.	8.2	142
114	Suppressing Aggregation in a Large Polycyclic Aromatic Hydrocarbon. Journal of the American Chemical Society, 2006, 128, 1334-1339.	13.7	141
115	Pyrene as Chromophore and Electrophore: Encapsulation in a Rigid Polyphenylene Shell. Chemistry - A European Journal, 2006, 12, 6117-6128.	3.3	139
116	Bottom-Up Synthesis of Liquid-Phase-Processable Graphene Nanoribbons with Near-Infrared Absorption. ACS Nano, 2014, 8, 11622-11630.	14.6	138
117	From Dyestuff Chemistry to Cancer Theranostics: The Rise of Rylenecarboximides. Accounts of Chemical Research, 2019, 52, 2266-2277.	15.6	137
118	On-Surface Growth Dynamics of Graphene Nanoribbons: The Role of Halogen Functionalization. ACS Nano, 2018, 12, 74-81.	14.6	135
119	Discotic liquid crystalline hexabenzocoronenes carrying chiral and racemic branched alkyl chains: supramolecular engineering and improved synthetic methods. Tetrahedron, 2001, 57, 3769-3783.	1.9	134
120	Synthesis and Controlled Self-Assembly of Covalently Linked Hexa- <i>peri</i> -hexabenzocoronene/Perylene Diimide Dyads as Models To Study Fundamental Energy and Electron Transfer Processes. Journal of the American Chemical Society, 2012, 134, 5876-5886.	13.7	134
121	Concise Synthesis of 3D Ï€â€Extended Polyphenylene Cylinders. Angewandte Chemie - International Edition, 2014, 53, 1525-1528.	13.8	134
122	Pyrrole-Fused Azacoronene Family: The Influence of Replacement with Dialkoxybenzenes on the Optical and Electronic Properties in Neutral and Oxidized States. Journal of the American Chemical Society, 2013, 135, 8031-8040.	13.7	133
123	Chemical Vapor Deposition of N-Doped Graphene and Carbon Films: The Role of Precursors and Gas Phase. ACS Nano, 2014, 8, 3337-3346.	14.6	133
124	Visualizing spatial and temporal heterogeneity of single molecule rotational diffusion in a glassy polymer by defocused wide-field imaging. Polymer, 2006, 47, 2511-2518.	3.8	130
125	Synthesis of Graphene Nanoribbons by Ambient-Pressure Chemical Vapor Deposition and Device Integration. Journal of the American Chemical Society, 2016, 138, 15488-15496.	13.7	129
126	From Branched Polyphenylenes to Graphite Ribbons. Macromolecules, 2003, 36, 7082-7089.	4.8	126

#	Article	IF	CITATIONS
127	Superphenalene-Based Columnar Liquid Crystals. Angewandte Chemie - International Edition, 2004, 43, 755-758.	13.8	126
128	Triangle-Shaped Polycyclic Aromatic Hydrocarbons. Angewandte Chemie - International Edition, 2007, 46, 3033-3036.	13.8	126
129	Synthetic Principles Directing Charge Transport in Low-Band-Gap Dithienosilole–Benzothiadiazole Copolymers. Journal of the American Chemical Society, 2012, 134, 8944-8957.	13.7	124
130	Synthesis of Stable Nanographenes with OBO-Doped Zigzag Edges Based on Tandem Demethylation-Electrophilic Borylation. Journal of the American Chemical Society, 2016, 138, 9021-9024.	13.7	123
131	Synthesis of NBN-Type Zigzag-Edged Polycyclic Aromatic Hydrocarbons: 1,9-Diaza-9a-boraphenalene as a Structural Motif. Journal of the American Chemical Society, 2016, 138, 11606-11615.	13.7	121
132	Microstructure Evolution and Device Performance in Solution-Processed Polymeric Field-Effect Transistors: The Key Role of the First Monolayer. Journal of the American Chemical Society, 2012, 134, 4015-4018.	13.7	120
133	Amplification of Dissymmetry Factors in π-Extended [7]- and [9]Helicenes. Journal of the American Chemical Society, 2021, 143, 4661-4667.	13.7	119
134	Tailoring Bond Topologies in Open-Shell Graphene Nanostructures. ACS Nano, 2018, 12, 11917-11927.	14.6	118
135	Synthesis of Soluble Perylenebisamidine Derivatives. Novel Long-Wavelength Absorbing and Fluorescent Dyes. Chemistry of Materials, 1997, 9, 495-500.	6.7	117
136	Ultrafast Photoconductivity of Graphene Nanoribbons and Carbon Nanotubes. Nano Letters, 2013, 13, 5925-5930.	9.1	117
137	Quantum units from the topological engineering of molecular graphenoids. Science, 2019, 366, 1107-1110.	12.6	116
138	Relation between Supramolecular Order and Charge Carrier Mobility of Branched Alkyl Hexa-peri-hexabenzocoronenes. Chemistry of Materials, 2006, 18, 3634-3640.	6.7	115
139	Unexpected Phenyl Group Rearrangement during an Intramolecular Scholl Reaction Leading to an Alkoxy-Substituted Hexa-peri-hexabenzocoronene. Organic Letters, 2007, 9, 2485-2488.	4.6	115
140	Detection of Multiple Sclerosis from Exhaled Breath Using Bilayers of Polycyclic Aromatic Hydrocarbons and Single-Wall Carbon Nanotubes. ACS Chemical Neuroscience, 2011, 2, 687-693.	3.5	113
141	Dimensional Evolution of Polyphenylenes: Expanding in All Directions. Chemical Reviews, 2016, 116, 2103-2140.	47.7	113
142	Ï€-Extended Pyrene-Fused Double [7]Carbohelicene as a Chiral Polycyclic Aromatic Hydrocarbon. Journal of the American Chemical Society, 2019, 141, 12797-12803.	13.7	113
143	Synthesis, Structure, and Chiroptical Properties of a Double [7]Heterohelicene. Journal of the American Chemical Society, 2016, 138, 12783-12786.	13.7	112
144	Open-Shell Nonbenzenoid Nanographenes Containing Two Pairs of Pentagonal and Heptagonal Rings. Journal of the American Chemical Society, 2019, 141, 12011-12020.	13.7	112

#	Article	IF	Citations
145	Carbonization of Disclike Molecules in Porous Alumina Membranes: Toward Carbon Nanotubes with Controlled Graphene-Layer Orientation. Angewandte Chemie - International Edition, 2005, 44, 2120-2123.	13.8	111
146	Core, Shell, and Surface-Optimized Dendrimers for Blue Light-Emitting Diodes. Journal of the American Chemical Society, 2011, 133, 1301-1303.	13.7	111
147	Purely Armchair or Partially Chiral: Noncontact Atomic Force Microscopy Characterization of Dibromo-Bianthryl-Based Graphene Nanoribbons Grown on Cu(111). ACS Nano, 2016, 10, 8006-8011.	14.6	111
148	Bottom-Up Synthesis of Heteroatom-Doped Chiral Graphene Nanoribbons. Journal of the American Chemical Society, 2018, 140, 9104-9107.	13.7	110
149	FeNC Electrocatalysts with Densely Accessible FeN ₄ Sites for Efficient Oxygen Reduction Reaction. Advanced Functional Materials, 2021, 31, 2102420.	14.9	110
150	Solution Processable Fluorenyl Hexaâ€∢i>perià€hexabenzocoronenes in Organic Fieldâ€Effect Transistors and Solar Cells. Advanced Functional Materials, 2010, 20, 927-938.	14.9	109
151	Controlled Self-Assembly of <i>C</i> ₃ -Symmetric Hexa- <i>peri</i> -hexabenzocoronenes with Alternating Hydrophilic and Hydrophobic Substituents in Solution, in the Bulk, and on a Surface. Journal of the American Chemical Society, 2009, 131, 4439-4448.	13.7	107
152	Threeâ€Dimensionally Arranged Cyclic <i>p</i> â€Hexaphenylbenzene: Toward a Bottomâ€Up Synthesis of Sizeâ€Defined Carbon Nanotubes. Chemistry - A European Journal, 2012, 18, 16621-16625.	3.3	107
153	Green-Light-Triggered Phase Transition of Azobenzene Derivatives toward Reversible Adhesives. Journal of the American Chemical Society, 2019, 141, 7385-7390.	13.7	106
154	Topological Defect-Induced Magnetism in a Nanographene. Journal of the American Chemical Society, 2020, 142, 1147-1152.	13.7	106
155	A Soluble C60 Graphite Segment. Angewandte Chemie - International Edition, 1998, 37, 2696-2699.	13.8	105
156	Solution and on-surface synthesis of structurally defined graphene nanoribbons as a new family of semiconductors. Chemical Science, 2019, 10, 964-975.	7.4	104
157	Large magnetic exchange coupling in rhombus-shaped nanographenes with zigzag periphery. Nature Chemistry, 2021, 13, 581-586.	13.6	104
158	Deposition, Characterization, and Thin-Film-Based Chemical Sensing of Ultra-long Chemically Synthesized Graphene Nanoribbons. Journal of the American Chemical Society, 2014, 136, 7555-7558.	13.7	103
159	Cyclotrimerization of arylalkynes on Au(111). Chemical Communications, 2014, 50, 11200-11203.	4.1	103
160	Tetrabenzo[a,f,j,o]perylene: A Polycyclic Aromatic Hydrocarbon With An Openâ€Shell Singlet Biradical Ground State. Angewandte Chemie - International Edition, 2015, 54, 12442-12446.	13.8	103
161	Unexpected Scholl Reaction of $6,7,13,14$ -Tetraarylbenzo[$\langle i \rangle k \langle j \rangle$] tetraphene: Selective Formation of Five-Membered Rings in Polycyclic Aromatic Hydrocarbons. Journal of the American Chemical Society, 2016, 138, 2602-2608.	13.7	103
162	Synthesis and Structural Characterization of Hexa-tert-butyl- hexa-peri-hexabenzocoronene, Its Radical Cation Salt and Its Tricarbonylchromium Complex. Chemistry - A European Journal, 2000, 6, 1834-1839.	3.3	101

#	Article	IF	Citations
163	Supramolecular Staircase via Self-Assembly of Disklike Molecules at the Solidâ^'Liquid Interface. Journal of the American Chemical Society, 2001, 123, 11462-11467.	13.7	101
164	Pyrolysis in the Mesophase:Â A Chemist's Approach toward Preparing Carbon Nano- and Microparticles. Journal of the American Chemical Society, 2002, 124, 13130-13138.	13.7	101
165	Conjugated polymers – Problems and promises. Progress in Polymer Science, 2020, 100, 101179.	24.7	101
166	Hexa-peri-hexabenzocoronenes by Efficient Oxidative Cyclodehydrogenation:  The Role of the Oligophenylene Precursors. Organic Letters, 2006, 8, 1145-1148.	4.6	100
167	Polytriphenylene Dendrimers: A Unique Design for Blue‣ightâ€Emitting Materials. Angewandte Chemie - International Edition, 2008, 47, 8292-8296.	13.8	100
168	Graphene Nanoribbons as Low Band Gap Donor Materials for Organic Photovoltaics: Quantum Chemical Aided Design. ACS Nano, 2012, 6, 5539-5548.	14.6	99
169	Quantum Dots in Graphene Nanoribbons. Nano Letters, 2017, 17, 4277-4283.	9.1	99
170	Toward Full Zigzag-Edged Nanographenes: <i>peri</i> -Tetracene and Its Corresponding Circumanthracene. Journal of the American Chemical Society, 2018, 140, 6240-6244.	13.7	98
171	A Fluorescent Coreâ^'Shell Dendritic Macromolecule Specifically Stains The Extracellular Matrix. Journal of the American Chemical Society, 2008, 130, 7806-7807.	13.7	97
172	Tuning the Packing Density of 2D Supramolecular Self-Assemblies at the Solidâ^'Liquid Interface Using Variable Temperature. ACS Nano, 2010, 4, 1288-1292.	14.6	97
173	Nanoarray of Polycyclic Aromatic Hydrocarbons and Carbon Nanotubes for Accurate and Predictive Detection in Real-World Environmental Humidity. ACS Nano, 2011, 5, 6743-6753.	14.6	97
174	Photoswitchable Micro-Supercapacitor Based on a Diarylethene-Graphene Composite Film. Journal of the American Chemical Society, 2017, 139, 9443-9446.	13.7	96
175	Benzo[1,2-b:4,5-b′]bis[b]benzothiophene as solution processible organic semiconductor for field-effect transistors. Chemical Communications, 2008, , 1548.	4.1	95
176	Synthesis and crystal packing of large polycyclic aromatic hydrocarbons: hexabenzo[bc,ef,hi,kl,no,qr]coronene and dibenzo[fg,ij]phenanthro[9,10,1,2,3-pqrst]pentaphene. Journal of Materials Chemistry, 2000, 10, 879-886.	6.7	94
177	Novel Coreâ€Expanded Rylenebis(Dicarboximide) Dyes Bearing Pentacene Units: Facile Synthesis and Photophysical Properties. Chemistry - A European Journal, 2007, 13, 6555-6561.	3.3	94
178	From Branched Hydrocarbon Propellers to C3-Symmetric Graphite Disks. Journal of Organic Chemistry, 2004, 69, 5179-5186.	3.2	93
179	Cyclopentadithiophene–Benzothiadiazole Donor–Acceptor Polymers as Prototypical Semiconductors for High-Performance Field-Effect Transistors. Accounts of Chemical Research, 2018, 51, 1196-1205.	15.6	93
180	Structure of new carbonaceous materials: The role of vibrational spectroscopy. Carbon, 2005, 43, 1593-1609.	10.3	92

#	Article	IF	Citations
181	Structural Evolution of Hexa-peri-hexabenzocoronene Adlayers in Heteroepitaxy onn-Pentacontane Template Monolayers. Journal of the American Chemical Society, 2005, 127, 16245-16250.	13.7	92
182	Electronic Excitation Energy Transfer between Two Single Molecules Embedded in a Polymer Host. Physical Review Letters, 2007, 98, 047802.	7.8	92
183	Efficient Blueâ€Lightâ€Emitting Polymer Heterostructure Devices: The Fabrication of Multilayer Structures from Orthogonal Solvents. Advanced Materials, 2010, 22, 2087-2091.	21.0	92
184	Growth of Ultrathin Organic Semiconductor Microstripes with Thickness Control in the Monolayer Precision. Angewandte Chemie - International Edition, 2013, 52, 12530-12535.	13.8	92
185	Synthesis of Nitrogenâ€Doped ZigZagâ€Edge Peripheries: Dibenzoâ€9 <i>a</i> aaaaaaa<	13.8	92
186	Revealing the Electronic Structure of Silicon Intercalated Armchair Graphene Nanoribbons by Scanning Tunneling Spectroscopy. Nano Letters, 2017, 17, 2197-2203.	9.1	92
187	A C216-Nanographene Molecule with Defined Cavity as Extended Coronoid. Journal of the American Chemical Society, 2016, 138, 4322-4325.	13.7	90
188	A Stable Saddleâ€Shaped Polycyclic Hydrocarbon with an Openâ€Shell Singlet Ground State. Angewandte Chemie - International Edition, 2017, 56, 3280-3284.	13.8	90
189	Chemical Approaches to Carbonâ€Based Metalâ€Free Catalysts. Advanced Materials, 2019, 31, e1804863.	21.0	90
190	Heterogeneous Diffusion in Thin Polymer Films As Observed by High-Temperature Single-Molecule Fluorescence Microscopy. Journal of the American Chemical Society, 2012, 134, 480-488.	13.7	89
191	Persulfurated Coronene: A New Generation of "Sulflower― Journal of the American Chemical Society, 2017, 139, 2168-2171.	13.7	89
192	Enzymeâ€Triggered Disassembly of Perylene Monoimideâ€based Nanoclusters for Activatable and Deep Photodynamic Therapy. Angewandte Chemie - International Edition, 2020, 59, 14014-14018.	13.8	89
193	Hexathienocoronenes: Synthesis and Self-Organization. Journal of the American Chemical Society, 2012, 134, 17869-17872.	13.7	88
194	Chemical Vapor Deposition Synthesis and Terahertz Photoconductivity of Low-Band-Gap $\langle i \rangle N \langle i \rangle = 9$ Armchair Graphene Nanoribbons. Journal of the American Chemical Society, 2017, 139, 3635-3638.	13.7	88
195	Exploration of pyrazine-embedded antiaromatic polycyclic hydrocarbons generated by solution and on-surface azomethine ylide homocoupling. Nature Communications, 2017, 8, 1948.	12.8	88
196	Nanographenes and Graphene Nanoribbons as Multitalents of Present and Future Materials Science. Journal of the American Chemical Society, 2022, 144, 11499-11524.	13.7	88
197	Graphitic Molecules with Partial "Zig/Zag―Periphery. Journal of the American Chemical Society, 2004, 126, 7794-7795.	13.7	87
198	Resonance Raman contribution to the D band of carbon materials: Modeling defects with quantum chemistry. Journal of Chemical Physics, 2004, 120, 11889-11900.	3.0	87

#	Article	IF	CITATIONS
199	Single photon emission from graphene quantum dots at room temperature. Nature Communications, 2018, 9, 3470.	12.8	86
200	Toward Two-Dimensional Supramolecular Control of Hydrogen-Bonded Arrays:  The Case of Isophthalic Acids. Nano Letters, 2003, 3, 1485-1488.	9.1	85
201	Graphene nanoribbon blends with P3HT for organic electronics. Nanoscale, 2014, 6, 6301-6314.	5.6	85
202	Electronic band dispersion of graphene nanoribbons via Fourier-transformed scanning tunneling spectroscopy. Physical Review B, 2015, 91, .	3.2	85
203	Exciton–exciton annihilation and biexciton stimulated emission in graphene nanoribbons. Nature Communications, 2016, 7, 11010.	12.8	85
204	Probing the Relation Between Charge Transport and Supramolecular Organization Down to Ãngström Resolution in a Benzothiadiazoleâ€Cyclopentadithiophene Copolymer. Advanced Materials, 2013, 25, 1939-1947.	21.0	84
205	Diodenartige Stromâ€Spannungsâ€Kennlinie durch ein einzelnes Molekül – Rastertunnelspektroskopie mit submolekularer Auflösung an einem alkylierten, <i>peri</i> å€kondensierten Hexabenzocoronen. Angewandte Chemie, 1995, 107, 1768-1770.	2.0	83
206	From Ambi―to Unipolar Behavior in Discotic Dye Fieldâ€Effect Transistors. Advanced Materials, 2008, 20, 2715-2719.	21.0	83
207	Poly(ethylene oxide) Functionalized Graphene Nanoribbons with Excellent Solution Processability. Journal of the American Chemical Society, 2016, 138, 10136-10139.	13.7	83
208	Ambipolar Charge Transport in Isoindigo-Based Donor–Acceptor Polymers. Chemistry of Materials, 2016, 28, 1286-1297.	6.7	83
209	Raman Fingerprints of Atomically Precise Graphene Nanoribbons. Nano Letters, 2016, 16, 3442-3447.	9.1	83
210	Direct visualization of atomically precise nitrogen-doped graphene nanoribbons. Applied Physics Letters, 2014, 105, .	3.3	82
211	The Precise Synthesis of Phenyleneâ€Extended Cyclic Hexaâ€ <i>peri</i> à€hexabenzocoronenes from Polyarylated [<i>n</i>]Cycloparaphenylenes by the Scholl Reaction. Angewandte Chemie - International Edition, 2015, 54, 10341-10346.	13.8	82
212	Defocused Wideâ€field Imaging Unravels Structural and Temporal Heterogeneity in Complex Systems. Advanced Materials, 2009, 21, 1079-1090.	21.0	81
213	Graphitic Nanoribbons with Dibenzo[<i>e, </i>]pyrene Repeat Units: Synthesis and Self-Assembly. Macromolecules, 2009, 42, 6878-6884.	4.8	81
214	Negatively Curved Nanographene with Heptagonal and [5]Helicene Units. Journal of the American Chemical Society, 2020, 142, 14814-14819.	13.7	81
215	Arylamine-Substituted Hexa-peri-hexabenzocoronenes: Facile Synthesis and Their Potential Applications as"Coaxial―Hole-Transport Materials. Angewandte Chemie - International Edition, 2004, 43, 5331-5335.	13.8	80
216	Control of morphology in efficient photovoltaic diodes from discotic liquid crystals. Journal of Chemical Physics, 2006, 124, 174704.	3.0	80

#	Article	IF	Citations
217	Synthesis, Helical Organization, and Fibrous Formation of C3 Symmetric Methoxy-Substituted Discotic Hexa-peri-hexabenzocoronene. Chemistry of Materials, 2008, 20, 2872-2874.	6.7	80
218	Assembly and Fiber Formation of a Gemini-Type Hexathienocoronene Amphiphile for Electrical Conduction. Journal of the American Chemical Society, 2013, 135, 13531-13537.	13.7	80
219	Supramolecular Organization and Photovoltaics of Triangleâ€shaped Discotic Graphenes with Swallowâ€tailed Alkyl Substituents. Advanced Materials, 2008, 20, 2684-2689.	21.0	79
220	Cooperative Molecular Motion within a Selfâ€Assembled Liquidâ€Crystalline Molecular Wire: The Case of a TEGâ€Substituted Perylenediimide Disc. Angewandte Chemie - International Edition, 2009, 48, 4621-4624.	13.8	79
221	Accordion-like Oscillation of Contracted and Stretched Helices of Polyacetylenes Synchronized with the Restricted Rotation of Side Chains. Journal of the American Chemical Society, 2013, 135, 4110-4116.	13.7	76
222	A triaxial supramolecular weave. Nature Chemistry, 2017, 9, 1068-1072.	13.6	76
223	A Cycloaddition–Cyclodehydrogenation Route from Stilbenoids to Extended Aromatic Hydrocarbons. Angewandte Chemie International Edition in English, 1995, 34, 1583-1586.	4.4	7 5
224	Energy Transfer Rates and Pathways of Single Donor Chromophores in a Multichromophoric Dendrimer Built around a Central Acceptor Core. Journal of the American Chemical Society, 2004, 126, 14364-14365.	13.7	75
225	"Double-Concave―Graphene: Permethoxylated Hexa-peri-hexabenzocoronene and Its Cocrystals with Hexafluorobenzene and Fullerene. Angewandte Chemie - International Edition, 2005, 44, 1247-1250.	13.8	7 5
226	Surface-Synthesized Graphene Nanoribbons for Room Temperature Switching Devices: Substrate Transfer and <i>ex Situ</i> Characterization. ACS Applied Nano Materials, 2019, 2, 2184-2192.	5.0	75
227	Helical Packing of Discotic Hexaphenyl Hexa-peri-hexabenzocoronenes:  Theory and Experiment. Journal of Physical Chemistry B, 2007, 111, 7481-7487.	2.6	74
228	Reversible Local and Global Switching in Multicomponent Supramolecular Networks: Controlled Guest Release and Capture at the Solution/Solid Interface. ACS Nano, 2015, 9, 11608-11617.	14.6	72
229	Synthesis of Dibenzo[<i>hi,st</i>]ovalene and Its Amplified Spontaneous Emission in a Polystyrene Matrix. Angewandte Chemie - International Edition, 2017, 56, 6753-6757.	13.8	72
230	Resolving Atomic Connectivity in Graphene Nanostructure Junctions. Nano Letters, 2015, 15, 5185-5190.	9.1	71
231	Polycyclic aromatic azomethine ylides: a unique entry to extended polycyclic heteroaromatics. Chemical Science, 2015, 6, 436-441.	7.4	71
232	On-Surface Synthesis of Antiaromatic and Open-Shell Indeno[2,1- <i>b</i> li>]fluorene Polymers and Their Lateral Fusion into Porous Ribbons. Journal of the American Chemical Society, 2019, 141, 12346-12354.	13.7	71
233	Structure-dependent electrical properties of graphene nanoribbon devices with graphene electrodes. Carbon, 2019, 146, 36-43.	10.3	70
234	Template-Mediated Synthesis of Polycyclic Aromatic Hydrocarbons: Cyclodehydrogenation and Planarization of a Hexaphenylbenzene Derivative at a Copper Surface. Angewandte Chemie - International Edition, 1999, 38, 3748-3752.	13.8	69

#	Article	IF	CITATIONS
235	On-Surface Cyclization of <i>ortho</i> -Dihalotetracenes to Four- and Six-Membered Rings. Journal of the American Chemical Society, 2017, 139, 17617-17623.	13.7	68
236	Bandgap Engineering of Graphene Nanoribbons by Control over Structural Distortion. Journal of the American Chemical Society, 2018, 140, 7803-7809.	13.7	68
237	Phenanthrene Condensed Thiadiazoloquinoxaline Donor–Acceptor Polymer for Phototransistor Applications. Chemistry of Materials, 2015, 27, 2218-2223.	6.7	67
238	Hexasubstituted Benzenes with Ultrastrong Dipole Moments. Angewandte Chemie - International Edition, 2016, 55, 3220-3223.	13.8	67
239	Water-Soluble NIR-Absorbing Rylene Chromophores for Selective Staining of Cellular Organelles. Journal of the American Chemical Society, 2016, 138, 2881-2884.	13.7	66
240	Oligomers of Hexa-peri-hexabenzocoronenes as "Super-oligophenylenes― Synthesis, Electronic Properties, and Self-assembly. Journal of Organic Chemistry, 2004, 69, 8194-8204.	3.2	65
241	Blue-Emitting Poly(2,7-pyrenylene)s: Synthesis and Optical Properties. Macromolecules, 2008, 41, 7933-7937.	4.8	65
242	Lateral Fusion of Chemical Vapor Deposited $\langle i \rangle N \langle i \rangle = 5$ Armchair Graphene Nanoribbons. Journal of the American Chemical Society, 2017, 139, 9483-9486.	13.7	65
243	Inversionsbarrieren <i>Ortho,ortho</i> ′â€verbrückter Biphenyle. Chemische Berichte, 1990, 123, 2349-2371	1.0.2	64
244	Role of Edge Engineering in Photoconductivity of Graphene Nanoribbons. Journal of the American Chemical Society, 2017, 139, 7982-7988.	13.7	64
245	Coupled Spin States in Armchair Graphene Nanoribbons with Asymmetric Zigzag Edge Extensions. Nano Letters, 2020, 20, 6429-6436.	9.1	64
246	Novel Perylene Chromophores Obtained by a Facile Oxidative Cyclodehydrogenation Route. Chemistry - A European Journal, 2001, 7, 2197-2205.	3.3	63
247	Temperature-Dependent Multidimensional Self-Assembly of Polyphenylene-Based "Rod–Coil―Graft Polymers. Journal of the American Chemical Society, 2015, 137, 11602-11605.	13.7	63
248	Quaterrylentetracarbonsärediimide. Angewandte Chemie, 1995, 107, 1487-1489.	2.0	62
249	Branched Polyphenylenes by Repetitive Dielsâ^Alder Cycloaddition. Macromolecules, 2000, 33, 3525-3529.	4.8	62
250	A Simple and Versatile Route to Stable Quantum Dotâ^Dye Hybrids in Nonaqueous and Aqueous Solutions. Journal of the American Chemical Society, 2008, 130, 17242-17243.	13.7	62
251	Palladiumâ€Catalyzed Pentannulation of Polycyclic Aromatic Hydrocarbons. Chemistry - A European Journal, 2011, 17, 12756-12762.	3.3	62
252	Surface Supported Gold–Organic Hybrids: Onâ€Surface Synthesis and Surface Directed Orientation. Small, 2014, 10, 1361-1368.	10.0	62

#	Article	IF	CITATIONS
253	Controlling the Surface Organization of Conjugated Donor–Acceptor Polymers by their Aggregation in Solution. Advanced Materials, 2016, 28, 9430-9438.	21.0	62
254	Syntheses and Characterizations of Functional Polycyclic Aromatic Hydrocarbons and Graphene Nanoribbons. Bulletin of the Chemical Society of Japan, 2020, 93, 490-506.	3.2	62
255	Von Hexaâ€ <i>peri</i> â€hexabenzocoronen zu "Superacenenâ€i,• Angewandte Chemie, 1997, 109, 1676-1679	.2.0	61
256	Transition Between Band and Hopping Transport in Polymer Fieldâ€Effect Transistors. Advanced Materials, 2014, 26, 8169-8173.	21.0	61
257	Heteroatom-Doped Perihexacene from a Double Helicene Precursor: On-Surface Synthesis and Properties. Journal of the American Chemical Society, 2017, 139, 4671-4674.	13.7	61
258	On-Surface Synthesis of a Nonplanar Porous Nanographene. Journal of the American Chemical Society, 2019, 141, 7726-7730.	13.7	61
259	Controlling the Columnar Orientation of <i>C</i> ₃ â€Symmetric "Superbenzenes―through Alternating Polar/Apolar Substitutents. Angewandte Chemie - International Edition, 2008, 47, 1703-1706.	13.8	60
260	On the role of aggregation effects in the performance of perylene-diimide based solar cells. Organic Electronics, 2014, 15, 1347-1361.	2.6	60
261	On-Surface Synthesis of Indenofluorene Polymers by Oxidative Five-Membered Ring Formation. Journal of the American Chemical Society, 2018, 140, 3532-3536.	13.7	60
262	Polyarylenes and poly(arylenevinylene)s: 8. The first soluble ladder polymer with 1,4-benzoquinone-bismethide subunits. Polymer, 1992, 33, 2443-2446.	3.8	59
263	Facile synthesis of terrylene and its isomer benzoindenoperylene. Journal of Materials Chemistry, 2006, 16, 1053.	6.7	59
264	Photoblinking and photobleaching of rylene diimide dyes. Physical Chemistry Chemical Physics, 2011, 13, 1776-1785.	2.8	59
265	Facile Protocol for Alkaline Electrolyte Purification and Its Influence on a Ni–Co Oxide Catalyst for the Oxygen Evolution Reaction. ACS Catalysis, 2019, 9, 8165-8170.	11.2	59
266	Impact of Interfacial Microstructure on Charge Carrier Transport in Solutionâ€Processed Conjugated Polymer Fieldâ€Effect Transistors. Advanced Materials, 2016, 28, 2245-2252.	21.0	58
267	High Power Inâ€Plane Microâ€Supercapacitors Based on Mesoporous Polyaniline Patterned Graphene. Small, 2017, 13, 1603388.	10.0	58
268	The Origin of Heterogeneity of Polymer Dynamics near the Glass Temperature As Probed by Defocused Imaging. Macromolecules, 2011, 44, 9703-9709.	4.8	57
269	Entry to Coronene Chemistry—Making Large Electron Donors and Acceptors. Chemistry - A European Journal, 2008, 14, 6322-6325.	3.3	56
270	Functionalization of Self-Assembled Hexa- <i>peri</i> hexabenzocoronene Fibers with Peptides for Bioprobing. Journal of the American Chemical Society, 2009, 131, 14618-14619.	13.7	56

#	Article	IF	Citations
271	Ï€-Extended and Curved Antiaromatic Polycyclic Hydrocarbons. Journal of the American Chemical Society, 2017, 139, 7513-7521.	13.7	55
272	On-Surface Synthesis of Unsaturated Carbon Nanostructures with Regularly Fused Pentagon–Heptagon Pairs. Journal of the American Chemical Society, 2020, 142, 10291-10296.	13.7	53
273	Current–Voltage Characteristics of a Homologous Series of Polycyclic Aromatic Hydrocarbons. Chemistry - A European Journal, 2007, 13, 7349-7357.	3.3	52
274	A surface-bound molecule that undergoes optically biased Brownian rotation. Nature Nanotechnology, 2014, 9, 131-136.	31.5	52
275	Adding Four Extra K-Regions to Hexa- <i>peri</i> hexabenzocoronene. Journal of the American Chemical Society, 2016, 138, 4726-4729.	13.7	52
276	Anchor Groups for Grapheneâ€Porphyrin Singleâ€Molecule Transistors. Advanced Functional Materials, 2018, 28, 1803629.	14.9	52
277	Synthesis of Nonplanar Graphene Nanoribbon with Fjord Edges. Journal of the American Chemical Society, 2021, 143, 5654-5658.	13.7	52
278	A water-soluble hexa-peri-hexabenzocoronene: synthesis, self-assembly and role as template for porous silica with aligned nanochannels. Chemical Communications, 2006, , 48-50.	4.1	51
279	Magnetoresistance and Charge Transport in Graphene Governed by Nitrogen Dopants. ACS Nano, 2015, 9, 1360-1366.	14.6	51
280	Bottom-Up, On-Surface-Synthesized Armchair Graphene Nanoribbons for Ultra-High-Power Micro-Supercapacitors. Journal of the American Chemical Society, 2020, 142, 17881-17886.	13.7	51
281	MALDI-TOF mass spectrometry in polymer analytics, 2. Molecular weight analysis of rigid-rod polymers. Macromolecular Chemistry and Physics, 1996, 197, 3285-3296.	2.2	50
282	A Polyphenylene Dendrimerâ^'Detergent Complex as a Highly Fluorescent Probe for Bioassays. Journal of the American Chemical Society, 2003, 125, 5832-5838.	13.7	50
283	Arrays of Aligned Supramolecular Wires by Macroscopic Orientation of Columnar Discotic Mesophases. ACS Nano, 2012, 6, 9359-9365.	14.6	50
284	Bright Blue Solution Processed Tripleâ€Layer Polymer Lightâ€Emitting Diodes Realized by Thermal Layer Stabilization and Orthogonal Solvents. Advanced Functional Materials, 2013, 23, 4897-4905.	14.9	50
285	Cycloparaphenylenes and Their Catenanes: Complex Macrocycles Unveiled by Ion Mobility Mass Spectrometry. Angewandte Chemie - International Edition, 2017, 56, 2645-2648.	13.8	50
286	Synthesis of Triply Fused Porphyrinâ€Nanographene Conjugates. Angewandte Chemie - International Edition, 2018, 57, 11233-11237.	13.8	50
287	Polyphenylene dendrimers via Diels–Alder reactions: the convergent approach. Chemical Communications, 1999, , 2293-2294.	4.1	49
288	High Quality Dispersions of Hexabenzocoronene in Organic Solvents. Journal of the American Chemical Society, 2012, 134, 12168-12179.	13.7	49

#	Article	IF	Citations
289	Toward Perylene Dyes by the Hundsdiecker Reaction. Organic Letters, 2014, 16, 2814-2817.	4.6	49
290	Benzo-Fused Periacenes or Double Helicenes? Different Cyclodehydrogenation Pathways on Surface and in Solution. Journal of the American Chemical Society, 2019, 141, 7399-7406.	13.7	49
291	On the distribution of ï€-electrons in large polycyclic aromatic hydrocarbons. Chemical Physics Letters, 2004, 397, 412-416.	2.6	48
292	End Capping Does Matter: Enhanced Order and Charge Transport in Conjugated Donor–Acceptor Polymers. Macromolecules, 2015, 48, 6369-6377.	4.8	48
293	Intrinsic Properties of Single Graphene Nanoribbons in Solution: Synthetic and Spectroscopic Studies. Journal of the American Chemical Society, 2018, 140, 10416-10420.	13.7	48
294	Whiteâ€Emitting Conjugated Polymer/Inorganic Hybrid Spheres: Phenylethynyl and 2,6â€Bis(pyrazolyl)pyridine Copolymer Coordinated to Eu(tta) ₃ . Advanced Functional Materials, 2013, 23, 5875-5880.	14.9	47
295	Diels–Alder polymerization: a versatile synthetic method toward functional polyphenylenes, ladder polymers and graphene nanoribbons. Polymer Journal, 2018, 50, 3-20.	2.7	47
296	Functionalized Hexa-peri-hexabenzocoronenes:Â Stable Supramolecular Order by Polymerization in the Discotic Mesophase. Chemistry of Materials, 2000, 12, 1638-1647.	6.7	46
297	Stop-Frame Filming and Discovery of Reactions at the Single-Molecule Level by Transmission Electron Microscopy. ACS Nano, 2017, 11, 2509-2520.	14.6	46
298	Controlled Quantum Dot Formation in Atomically Engineered Graphene Nanoribbon Field-Effect Transistors. ACS Nano, 2020, 14, 5754-5762.	14.6	46
299	From Macro- to Nanoscopic Templating with Nanographenes. Journal of the American Chemical Society, 2006, 128, 14424-14425.	13.7	45
300	Photoinduced C–C Reactions on Insulators toward Photolithography of Graphene Nanoarchitectures. Journal of the American Chemical Society, 2014, 136, 4651-4658.	13.7	45
301	High Photoresponsivity in Graphene Nanoribbon Field-Effect Transistor Devices Contacted with Graphene Electrodes. Journal of Physical Chemistry C, 2017, 121, 10620-10625.	3.1	45
302	Sulfur-doped graphene nanoribbons with a sequence of distinct band gaps. Nano Research, 2017, 10, 3377-3384.	10.4	44
303	Synthetic Engineering of Graphene Nanoribbons with Excellent Liquid-Phase Processability. Trends in Chemistry, 2019, 1, 549-558.	8.5	44
304	Wavelength-dependent Raman activity of D2h symmetry polycyclic aromatic hydrocarbons in the D-band and acoustic phonon regions. Chemical Physics, 2004, 301, 81-93.	1.9	43
305	Bottomâ€Up Synthesis of Necklaceâ€Like Graphene Nanoribbons. Chemistry - an Asian Journal, 2015, 10, 2134-2138.	3.3	43
306	Exhaled Breath Markers for Nonimaging and Noninvasive Measures for Detection of Multiple Sclerosis. ACS Chemical Neuroscience, 2017, 8, 2402-2413.	3.5	43

#	Article	IF	Citations
307	Edge Functionalization of Structurally Defined Graphene Nanoribbons for Modulating the Self-Assembled Structures. Journal of the American Chemical Society, 2017, 139, 16454-16457.	13.7	43
308	Outstanding Charge Mobility by Band Transport in Two-Dimensional Semiconducting Covalent Organic Frameworks. Journal of the American Chemical Society, 2022, 144, 7489-7496.	13.7	43
309	Tetrabenzo[a,f,j,o]perylene: A Polycyclic Aromatic Hydrocarbon With An Openâ€Shell Singlet Biradical Ground State. Angewandte Chemie, 2015, 127, 12619-12623.	2.0	42
310	Design and construction of few-layer graphene cathode for ultrafast and high-capacity aluminum-ion batteries. Energy Storage Materials, 2020, 27, 396-404.	18.0	42
311	Efficient Synthesis of Symmetrically and Unsymmetrically Substituted Hexaphenylbenzene Analogues by Suzuki–Miyaura Coupling Reactions. Chemistry - an Asian Journal, 2008, 3, 759-766.	3.3	41
312	Evidence for Bandâ€Like Transport in Grapheneâ€Based Organic Monolayers. Advanced Materials, 2010, 22, 384-388.	21.0	41
313	Charge transport mechanism in networks of armchair graphene nanoribbons. Scientific Reports, 2020, 10, 1988.	3.3	41
314	A Stable Saddleâ€Shaped Polycyclic Hydrocarbon with an Openâ€Shell Singlet Ground State. Angewandte Chemie, 2017, 129, 3328-3332.	2.0	40
315	Graphene Nanoribbons Derived from Zigzag Edge-Encased Poly(<i>para</i> -2,9-dibenzo[<i>bc</i> , <i>kl</i>]coronenylene) Polymer Chains. Journal of the American Chemical Society, 2019, 141, 2843-2846.	13.7	40
316	Dibenzo[<i>hi</i> , <i>st</i>]ovalene as Highly Luminescent Nanographene: Efficient Synthesis via Photochemical Cyclodehydroiodination, Optoelectronic Properties, and Single-Molecule Spectroscopy. Journal of the American Chemical Society, 2019, 141, 16439-16449.	13.7	39
317	Facilitating the acidic oxygen reduction of Fe–N–C catalysts by fluorine-doping. Materials Horizons, 2022, 9, 417-424.	12.2	39
318	Molecularly Tethered Amphiphiles as 3-D Supramolecular Assembly Platforms: Unlocking a Trapped Conformation. Journal of the American Chemical Society, 2009, 131, 8537-8547.	13.7	38
319	Structure–Property Relationships Directing Transport and Charge Separation in Isoindigo Polymers. Macromolecules, 2016, 49, 4008-4022.	4.8	38
320	Charging OBOâ€Fused Double [5]Helicene with Electrons. Angewandte Chemie - International Edition, 2019, 58, 14969-14973.	13.8	38
321	Onâ€Surface Synthesis and Characterization of Aceneâ€Based Nanoribbons Incorporating Fourâ€Membered Rings. Chemistry - A European Journal, 2019, 25, 12074-12082.	3.3	38
322	Large-Cavity Coronoids with Different Inner and Outer Edge Structures. Journal of the American Chemical Society, 2020, 142, 12046-12050.	13.7	38
323	A Nanographeneâ€Based Twoâ€Dimensional Covalent Organic Framework as a Stable and Efficient Photocatalyst. Angewandte Chemie - International Edition, 2022, 61, .	13.8	38
324	Toward the <i>peri</i> â€Pentacene Framework. Chemistry - A European Journal, 2013, 19, 17821-17826.	3.3	37

#	Article	IF	Citations
325	Surface-Assisted Alkane Polymerization: Investigation on Structure–Reactivity Relationship. Journal of the American Chemical Society, 2018, 140, 4820-4825.	13.7	37
326	A Highly Luminescent Nitrogen-Doped Nanographene as an Acid- and Metal-Sensitive Fluorophore for Optical Imaging. Journal of the American Chemical Society, 2021, 143, 10403-10412.	13.7	37
327	Eine Cycloadditionsâ€Cyclodehydrierungsâ€Route von Stilbenoiden zu ausgedehnten aromatischen Kohlenwasserstoffen. Angewandte Chemie, 1995, 107, 1751-1754.	2.0	36
328	Sulfurâ€Annulated Hexaâ€∢i>perià€hexabenzocoronene Decorated with Phenylthio Groups at the Periphery. Angewandte Chemie - International Edition, 2015, 54, 2927-2931.	13.8	36
329	The polar side of polyphenylene dendrimers. Chemical Society Reviews, 2015, 44, 4072-4090.	38.1	36
330	A Universal Length-Dependent Vibrational Mode in Graphene Nanoribbons. ACS Nano, 2019, 13, 13083-13091.	14.6	36
331	A Waterâ€Soluble, NIRâ€Absorbing Quaterrylenediimide Chromophore for Photoacoustic Imaging and Efficient Photothermal Cancer Therapy. Angewandte Chemie, 2019, 131, 1652-1656.	2.0	36
332	A New Solution to an Old Problem: Synthesis of Unsubstituted Poly(<i>para</i> phenylene). Journal of the American Chemical Society, 2016, 138, 16208-16211.	13.7	35
333	Nanographenes: Ultrastable, Switchable, and Bright Probes for Superâ€Resolution Microscopy. Angewandte Chemie - International Edition, 2020, 59, 496-502.	13.8	35
334	Protonâ€Gated Ringâ€Closure of a Negative Photochromic Azuleneâ€Based Diarylethene. Angewandte Chemie - International Edition, 2020, 59, 18532-18536.	13.8	35
335	A Unique Peryleneâ€Based DNA Intercalator: Localization in Cell Nuclei and Inhibition of Cancer Cells and Tumors. Small, 2014, 10, 4087-4092.	10.0	34
336	Lightâ€Induced Solubility Modulation of Polyfluorene To Enhance the Performance of OLEDs. Angewandte Chemie - International Edition, 2015, 54, 14545-14548.	13.8	34
337	A spiro-bifluorene based 3D electron acceptor with dicyanovinylene substitution for solution-processed non-fullerene organic solar cells. Journal of Materials Chemistry A, 2015, 3, 11086-11092.	10.3	34
338	Pump–Push–Probe for Ultrafast Allâ€Optical Switching: The Case of a Nanographene Molecule. Advanced Functional Materials, 2019, 29, 1805249.	14.9	34
339	Revisiting Acepleiadylene: Two-Step Synthesis and π-Extension toward Nonbenzenoid Nanographene. Journal of the American Chemical Society, 2021, 143, 5314-5318.	13.7	34
340	Extending the Limits of Precision Polymer Synthesis: Giant Polyphenylene Dendrimers in the Megadalton Mass Range Approaching Structural Perfection. Journal of the American Chemical Society, 2013, 135, 4183-4186.	13.7	33
341	Molecular defects in organic materials. Nature Reviews Materials, 2016, 1, .	48.7	33
342	Nanographenes as electron-deficient cores of donor-acceptor systems. Nature Communications, 2018, 9, 1901.	12.8	33

#	Article	IF	Citations
343	Ï€-extended [12]cycloparaphenylenes: from a hexaphenylbenzene cyclohexamer to its unexpected C2-symmetric congener. Chemical Science, 2015, 6, 7072-7078.	7.4	32
344	Peralkylated Coronenes via Regiospecific Hydrogenation of Hexa-peri-hexabenzocoronenes. Journal of the American Chemical Society, 2004, 126, 766-771.	13.7	31
345	On-surface polyarylene synthesis by cycloaromatization of isopropyl substituents., 2022, 1, 289-296.		31
346	New Synthetic Routes to Alkyl‧ubstituted and Functionalized Perylenes. Liebigs Annalen, 1997, 1997, 395-407.	0.8	30
347	Strong Exciton–Photon Coupling in a Nanographene Filled Microcavity. Nano Letters, 2017, 17, 5521-5525.	9.1	30
348	Electrochemical Synthesis, Deposition, and Doping of Polycyclic Aromatic Hydrocarbon Films. Journal of the American Chemical Society, 2021, 143, 2682-2687.	13.7	30
349	Evolution of the Topological Energy Band in Graphene Nanoribbons. Journal of Physical Chemistry Letters, 2021, 12, 8679-8684.	4.6	30
350	Optimized graphene electrodes for contacting graphene nanoribbons. Carbon, 2021, 184, 331-339.	10.3	30
351	Thin Layers of Columns of an Amphiphilic Hexa-peri-hexabenzocoronene at Silicon Wafer Surfaces. Langmuir, 2003, 19, 5036-5041.	3.5	29
352	Layer growth and desorption kinetics of a discoid molecular acceptor on Au(111). Chemical Physics Letters, 2009, 473, 321-325.	2.6	29
353	Surface-Specific Spectroscopy of Water at a Potentiostatically Controlled Supported Graphene Monolayer. Journal of Physical Chemistry C, 2019, 123, 24031-24038.	3.1	29
354	On-Surface Synthesis of Oligo(indenoindene). Journal of the American Chemical Society, 2020, 142, 12925-12929.	13.7	29
355	Synthesis of Polycyclic Aromatic Hydrocarbons and Graphite Islands via Surface-Induced Reaction of Small Molecules. ChemPhysChem, 2001, 2, 317-320.	2.1	28
356	Phase separation and affinity between a fluorinated perylene diimide dye and an alkyl-substituted hexa-peri-hexabenzocoronene. Journal of Materials Chemistry, 2010, 20, 71-82.	6.7	28
357	A Polyphenylene Dendrimer Drug Transporter with Precisely Positioned Amphiphilic Surface Patches. Advanced Healthcare Materials, 2015, 4, 377-384.	7.6	28
358	Electron beam controlled covalent attachment of small organic molecules to graphene. Nanoscale, 2016, 8, 2711-2719.	5.6	28
359	Reversible Photochemical Control of Doping Levels in Supported Graphene. Journal of Physical Chemistry C, 2017, 121, 4083-4091.	3.1	28
360	Ultraâ€Narrow Lowâ€Bandgap Graphene Nanoribbons from Bromoperylenes—Synthesis and Terahertzâ€Spectroscopy. Chemistry - A European Journal, 2017, 23, 4870-4875.	3.3	28

#	Article	IF	CITATIONS
361	Synthesis and assembly of extended quintulene. Nature Communications, 2020, 11, 3976.	12.8	28
362	Redâ€Emitting Dendritic Iridium(III) Complexes for Solution Processable Phosphorescent Organic Lightâ€Emitting Diodes. Macromolecular Rapid Communications, 2012, 33, 1036-1041.	3.9	27
363	Design Rules for Memories Based on Graphene Ferroelectric Field-Effect Transistors. ACS Applied Electronic Materials, 2020, 2, 2-8.	4.3	27
364	On-Surface Synthesis of Dibenzohexacenohexacene and Dibenzopentaphenoheptaphene. Bulletin of the Chemical Society of Japan, 2021, 94, 997-999.	3.2	27
365	Tuning the Solid State Emission of Thin Films/Microspheres Obtained from Alternating Oligo(3-octylthiophenes) and 2,6-Bis(pyrazole)pyridine Copolymers by Varying Conjugation Length and Eu ³⁺ /Tb ³⁺ Metal Coordination. Macromolecules, 2015, 48, 4801-4812.	4.8	26
366	Morphology Control in Films of Isoindigo Polymers by Side-Chain and Molecular Weight Effects. ACS Applied Materials & Samp; Interfaces, 2017, 9, 13357-13368.	8.0	26
367	Structure–Property Relationship of Phenylene-Based Self-Assembled Monolayers for Record Low Work Function of Indium Tin Oxide. Journal of Physical Chemistry Letters, 2018, 9, 3731-3737.	4.6	26
368	Optimized Substrates and Measurement Approaches for Raman Spectroscopy of Graphene Nanoribbons. Physica Status Solidi (B): Basic Research, 2019, 256, 1900343.	1.5	26
369	Synthesis of Circumpyrene by Alkyne Benzannulation of Brominated Dibenzo[<i>hi</i> , <i>st</i>]ovalene. Journal of the American Chemical Society, 2019, 141, 19994-19999.	13.7	26
370	Self-Assembly Behavior of Alkylated Isophthalic Acids Revisited: Concentration in Control and Guest-Induced Phase Transformation. Langmuir, 2014, 30, 15206-15211.	3.5	25
371	Self-assembly and charge carrier transport of solution-processed conjugated polymer monolayers on dielectric surfaces with controlled sub-nanometer roughness. Nanoscale, 2016, 8, 9211-9216.	5.6	25
372	Carbonyl-Functionalized Cyclazines as Colorants and Air-Stable <i>n</i> -Type Semiconductors. Organic Letters, 2018, 20, 1409-1412.	4.6	25
373	n-Type Doping of Organic Semiconductors: Immobilization via Covalent Anchoring. Chemistry of Materials, 2019, 31, 4213-4221.	6.7	25
374	Poly(4â€~-vinylhexaphenylbenzene)s: New Carbon-Rich Polymers. Macromolecules, 1998, 31, 6014-6021.	4.8	24
375	Perchlorination of Coronene Enhances its Propensity for Selfâ€Assembly on Graphene. ChemPhysChem, 2016, 17, 352-357.	2.1	24
376	Building Pentagons into Graphenic Structures by On-Surface Polymerization and Aromatic Cyclodehydrogenation of Phenyl-Substituted Polycyclic Aromatic Hydrocarbons. Journal of Physical Chemistry C, 2016, 120, 17588-17593.	3.1	24
377	Furan-containing double tetraoxa[7]helicene and its radical cation. Chemical Communications, 2020, 56, 15181-15184.	4.1	24
378	Enzymeâ€Triggered Disassembly of Perylene Monoimideâ€based Nanoclusters for Activatable and Deep Photodynamic Therapy. Angewandte Chemie, 2020, 132, 14118-14122.	2.0	24

#	Article	IF	CITATIONS
379	Substrate-Modulated Synthesis of Metal–Organic Hybrids by Tunable Multiple Aryl–Metal Bonds. Journal of the American Chemical Society, 2022, 144, 8214-8222.	13.7	24
380	Flexibility of phenylene oligomers revealed by single molecule spectroscopy. Journal of Chemical Physics, 2006, 125, 144903.	3.0	23
381	Site- and Orientation-Selective Anchoring of a Prototypical Molecular Building Block. Journal of the American Chemical Society, 2007, 129, 5007-5011.	13.7	23
382	Electrospray deposition of structurally complex molecules revealed by atomic force microscopy. Nanoscale, 2018, 10, 1337-1344.	5 . 6	23
383	Modulation of the Nonlinear Optical Properties of Dibenzo[<i>hi</i> , <i>st</i>)ovalene by Peripheral Substituents. Journal of Physical Chemistry C, 2018, 122, 25007-25013.	3.1	23
384	Regioselective Bromination and Functionalization of Dibenzo[<i>hi</i> , <i>st</i>]ovalene as Highly Luminescent Nanographene with Zigzag Edges. Chemistry - an Asian Journal, 2019, 14, 1703-1707.	3.3	23
385	Onâ€6urface Synthesis of Cumulene ontaining Polymers via Twoâ€6tep Dehalogenative Homocoupling of Dibromomethyleneâ€Functionalized Tribenzoazulene. Angewandte Chemie - International Edition, 2020, 59, 13281-13287.	13.8	23
386	Self-Assembly of Extended Polycyclic Aromatic Hydrocarbons on Cu(111). Journal of Physical Chemistry B, 2006, 110, 11253-11258.	2.6	22
387	Impact of local compressive stress on the optical transitions of single organic dye molecules. Nature Nanotechnology, 2014, 9, 182-186.	31.5	22
388	Alternating Donor–Acceptor Arrays from Hexaâ€periâ€hexabenzocoronene and Benzothiadiazole: Synthesis, Optical Properties, and Selfâ€Assembly. Chemistry - A European Journal, 2015, 21, 86-90.	3.3	22
389	All-solution-processed multilayer polymer/dendrimer light emitting diodes. Organic Electronics, 2016, 35, 164-170.	2.6	22
390	Diffusion of single molecular and macromolecular probes during the free radical bulk polymerization of MMA – towards a better understanding of the Trommsdorff effect on a molecular level. Polymer Chemistry, 2016, 7, 4100-4105.	3.9	22
391	Patchy Amphiphilic Dendrimers Bind Adenovirus and Control Its Host Interactions and in Vivo Distribution. ACS Nano, 2019, 13, 8749-8759.	14.6	22
392	Coveâ€Edged Hexaâ€ <i>peri</i> â€hexabenzoâ€bisâ€ <i>peri</i> â€octacene: Molecular Conformations and Ampli Spontaneous Emission. Angewandte Chemie - International Edition, 2022, 61, .	fied 13.8	22
393	Tuning Polarity of Polyphenylene Dendrimers by Patched Surface Amphiphilicityâ€"Precise Control over Size, Shape, and Polarity. Macromolecular Rapid Communications, 2014, 35, 152-160.	3.9	21
394	The impact of grafted surface defects and their controlled removal on supramolecular self-assembly. Chemical Science, 2016, 7, 7028-7033.	7.4	21
395	Cycloparaphenylenes and Their Catenanes: Complex Macrocycles Unveiled by Ion Mobility Mass Spectrometry. Angewandte Chemie, 2017, 129, 2689-2692.	2.0	21
396	Optical Imaging and Spectroscopy of Atomically Precise Armchair Graphene Nanoribbons. Nano Letters, 2020, 20, 1124-1130.	9.1	21

#	Article	IF	CITATIONS
397	Compressing Double [7]Helicene by Successive Charging with Electrons. Angewandte Chemie - International Edition, 2020, 59, 15923-15927.	13.8	21
398	Multifunctional Chiral Ï€â€Conjugated Polymer Microspheres: Production and Confinement of NLO signal, Detection of Circularly Polarized Light, and Display of Laserâ€Triggered NLO Emission Shifts. Advanced Optical Materials, 2020, 8, 2000431.	7.3	21
399	Modulation of Domain Size in Polycrystalline n-Type Dicyanoperylene Mono- and Bilayer Transistors. ACS Nano, 2016, 10, 4268-4273.	14.6	20
400	Poly(Methyl Vinyl Ketone) as a Potential Carbon Fiber Precursor. Chemistry of Materials, 2017, 29, 780-788.	6.7	20
401	Expanding the limits of synthetic macromolecular chemistry through Polyphenylene Dendrimers. Journal of Nanoparticle Research, 2018, 20, 262.	1.9	20
402	Diketopyrrolopyrrole-Polymer Meets Thiol–Ene Click Chemistry: A Cross-Linked Acceptor for Thermally Stable Near-Infrared Photodetectors. Chemistry of Materials, 2019, 31, 7657-7665.	6.7	20
403	Organic Transistor Based on Cyclopentadithiopheneâ€Benzothiadiazole Donor–Acceptor Copolymer for the Detection and Discrimination between Multiple Structural Isomers. Advanced Functional Materials, 2019, 29, 1808188.	14.9	20
404	Photomodulation of Charge Transport in Allâ€Semiconducting 2D–1D van der Waals Heterostructures with Suppressed Persistent Photoconductivity Effect. Advanced Materials, 2020, 32, e2001268.	21.0	20
405	Giant thermal expansion of a two-dimensional supramolecular network triggered by alkyl chain motion. Communications Materials, 2020, 1, 8.	6.9	20
406	Amphiphilic Polyphenylene Dendron Conjugates for Surface Remodeling of Adenovirusâ€5. Angewandte Chemie - International Edition, 2020, 59, 5712-5720.	13.8	20
407	Graphene nanoribbons with mixed cove-cape-zigzag edge structure. Carbon, 2021, 175, 50-59.	10.3	20
408	Oligophenylenes as building blocks for well-defined graphite subunits. Carbon, 1998, 36, 827-831.	10.3	19
409	Preparation of Defined Albumin–Polymer Hybrids for Efficient Cell Transfection. Macromolecular Chemistry and Physics, 2010, 211, 146-153.	2.2	19
410	Effect of Dipole Functionalization on the Thermodynamics and Dynamics of Discotic Liquid Crystals. Journal of Physical Chemistry B, 2011, 115, 5807-5814.	2.6	19
411	Solid-State Organization and Ambipolar Field-Effect Transistors of Benzothiadiazole-Cyclopentadithiophene Copolymer with Long Branched Alkyl Side Chains. Polymers, 2013, 5, 833-846.	4.5	19
412	Coreâ€and‧urfaceâ€Functionalized Polyphenylene Dendrimers for Solutionâ€Processed, Pureâ€Blue Lightâ€Emitting Diodes Through Surfaceâ€toâ€Core Energy Transfer. Macromolecular Rapid Communications, 2014, 35, 1931-1936.	3.9	19
413	Synthesis of an Acceptor–Donor–Acceptor Multichromophore Consisting of Terrylene and Perylene Diimides for Multistep Energy Transfer Studies. Chemistry of Materials, 2016, 28, 906-914.	6.7	19
414	Probing optical excitations in chevron-like armchair graphene nanoribbons. Nanoscale, 2017, 9, 18326-18333.	5.6	19

#	Article	IF	Citations
415	Ferroelectric field-effect transistors based on solution-processed electrochemically exfoliated graphene. Solid-State Electronics, 2018, 144, 90-94.	1.4	19
416	Solution-Processed Graphene–Nanographene van der Waals Heterostructures for Photodetectors with Efficient and Ultralong Charge Separation. Journal of the American Chemical Society, 2021, 143, 17109-17116.	13.7	19
417	Synthesis and crystal structures of extremely crowded oligophenylenes as model precursors to â€~cubic graphite'. Tetrahedron, 2006, 62, 5417-5420.	1.9	18
418	Living on the edge: A nanographene molecule adsorbed across gold step edges. Surface Science, 2008, 602, L84-L88.	1.9	18
419	Two Channels of Charge Generation in Perylene Monoimide Solidâ€State Dyeâ€Sensitized Solar Cells. Advanced Energy Materials, 2014, 4, 1300640.	19.5	18
420	Controlling Cellular Uptake and Toxicity of Polyphenylene Dendrimers by Chemical Functionalization. ChemBioChem, 2017, 18, 960-964.	2.6	18
421	Synthesis of Dibenzo[<i>hi,st</i> jovalene and Its Amplified Spontaneous Emission in a Polystyrene Matrix. Angewandte Chemie, 2017, 129, 6857-6861.	2.0	18
422	Synthesis of Triply Fused Porphyrinâ€Nanographene Conjugates. Angewandte Chemie, 2018, 130, 11403-11407.	2.0	18
423	Photomodulation of Two-Dimensional Self-Assembly of Azobenzene–Hexa- <i>peri</i> -hexabenzocoronene–Azobenzene Triads. Chemistry of Materials, 2019, 31, 6979-6985.	6.7	18
424	Dicyclopentaannelated Hexaâ€∢i>perià€hexabenzocoronenes with a Singlet Biradical Ground State. Angewandte Chemie - International Edition, 2021, 60, 11300-11304.	13.8	18
425	Edge chlorination of hexa-peri-hexabenzocoronene investigated by density functional theory and vibrational spectroscopy. Physical Chemistry Chemical Physics, 2016, 18, 11869-11878.	2.8	17
426	Ionic Conduction in Poly(ethylene glycol)-Functionalized Hexa- <i>peri</i> hexabenzocoronene Amphiphiles. Macromolecules, 2017, 50, 1981-1990.	4.8	17
427	Photonic Microresonators from Charge Transfer in Polymer Particles: Toward Enhanced and Tunable Two-Photon Emission. ACS Applied Materials & Samp; Interfaces, 2018, 10, 16723-16730.	8.0	17
428	Band Gap of Atomically Precise Graphene Nanoribbons as a Function of Ribbon Length and Termination. ChemPhysChem, 2019, 20, 2348-2353.	2.1	17
429	Onâ€surface Synthesis of a Chiral Graphene Nanoribbon with Mixed Edge Structure. Chemistry - an Asian Journal, 2020, 15, 3807-3811.	3.3	17
430	Growth Optimization and Device Integration of Narrowâ€Bandgap Graphene Nanoribbons. Small, 2022, 18, .	10.0	17
431	Exfoliation of hexa-peri-hexabenzocoronene in water. Chemical Communications, 2010, 46, 9194.	4.1	16
432	To tilt or not to tilt? Kinetics of structure formation in a discotic liquid crystal. Soft Matter, 2011, 7, 4680.	2.7	16

#	Article	IF	Citations
433	Dithieno[2,3-d;2′,3′-d′]benzo[1,2-b;4,5-b′]dithiophene based organic sensitizers for dye-sensitized solocells. RSC Advances, 2014, 4, 54130-54133.	ar 3.6	16
434	Interaction of a Patterned Amphiphilic Polyphenylene Dendrimer with a Lipid Monolayer: Electrostatic Interactions Dominate. Langmuir, 2015, 31, 1980-1987.	3.5	16
435	Versatile Colorant Syntheses by Multiple Condensations of Acetyl Anilines with Perylene Anhydrides. Angewandte Chemie - International Edition, 2015, 54, 2285-2289.	13.8	16
436	Photo-Cross-Linkable Polymeric Optoelectronics Based on the $[2 + 2]$ Cycloaddition Reaction of Cinnamic Acid. Macromolecules, 2016, 49, 1518-1522.	4.8	16
437	Dicyanobenzothiadiazole Derivatives Possessing Switchable Dielectric Permittivities. ACS Applied Materials & Samp; Interfaces, 2017, 9, 20527-20535.	8.0	16
438	Kinetic Ionic Permeation and Interfacial Doping of Supported Graphene. Nano Letters, 2019, 19, 9029-9036.	9.1	16
439	Highly fluorescent free-standing films assembled from perylenediimide microcrystals for boosting aniline sensing. Journal of Materials Chemistry C, 2020, 8, 1421-1426.	5.5	16
440	Vapor-Phase Transport Deposition, Characterization, and Applications of Large Nanographenes. Journal of the American Chemical Society, 2015, 137, 4453-4459.	13.7	15
441	Practical Syntheses of Terrylene Chromophores from Naphthalene and Perylene Building Blocks. Advanced Synthesis and Catalysis, 2017, 359, 4184-4189.	4.3	15
442	Direct Câ^'H Borylation at the 2―and 2,7â€Positions of Pyrene Leading to Brightly Blue―and Greenâ€Emitting Chromophores. Asian Journal of Organic Chemistry, 2018, 7, 2233-2238.	2.7	15
443	On-Surface Dehydro-Diels–Alder Reaction of Dibromo-bis(phenylethynyl)benzene. Journal of the American Chemical Society, 2020, 142, 1721-1725.	13.7	15
444	Onâ€Surface Synthesis of Cumuleneâ€Containing Polymers via Twoâ€Step Dehalogenative Homocoupling of Dibromomethyleneâ€Functionalized Tribenzoazulene. Angewandte Chemie, 2020, 132, 13383-13389.	2.0	15
445	NIR-triggered dual sensitization of nanoparticles for mild tumor phototherapy. Nano Today, 2022, 42, 101363.	11.9	15
446	Facile synthesis of 5,8â€linked quinolineâ€based copolymers. Polymer International, 2012, 61, 1318-1325.	3.1	14
447	π-Congested poly(paraphenylene) from 2,2′,6,6′-tetraphenyl-1,1′-biphenyl units: synthesis and structural characterization. Polymer Chemistry, 2013, 4, 2963.	3.9	14
448	Blue Light Emitting Polyphenylene Dendrimers with Bipolar Charge Transport Moieties. Molecules, 2016, 21, 1400.	3.8	14
449	Synthesis, Photophysical Characterization, and Selfâ€Assembly of Hexaâ€ <i>peri</i> àêhexabenzocoronene/Benzothiadiazole Donor–Acceptor Structure. ChemPlusChem, 2017, 82, 1030-1033.	2.8	14
450	Optical Investigation of Onâ€Surface Synthesized Armchair Graphene Nanoribbons. Physica Status Solidi (B): Basic Research, 2017, 254, 1700223.	1.5	14

#	Article	IF	Citations
451	Overcoming Steric Hindrance in Arylâ€Aryl Homocoupling via Onâ€Surface Copolymerization. ChemPhysChem, 2019, 20, 2360-2366.	2.1	14
452	Detachment Dynamics of Graphene Nanoribbons on Gold. ACS Nano, 2019, 13, 689-697.	14.6	14
453	On-surface activation of benzylic C-H bonds for the synthesis of pentagon-fused graphene nanoribbons. Nano Research, 2021, 14, 4754-4759.	10.4	14
454	Electrochemical Deposition of a Singleâ€Crystalline Nanorod Polycyclic Aromatic Hydrocarbon Film with Efficient Charge and Exciton Transport. Angewandte Chemie - International Edition, 2022, 61, .	13.8	14
455	A new approach to polybenzoid networks. Advanced Materials, 1996, 8, 504-507.	21.0	13
456	Energy Transfer at the Singleâ€Molecule Level: Synthesis of a Donor–Acceptor Dyad from Perylene and Terrylene Diimides. Chemistry - A European Journal, 2013, 19, 9160-9166.	3.3	13
457	Tuning Packing and Solubility of Donor (D)–Acceptor (A) Polymers by <i>cis</i> fe' <i>trans</i> lsomerization within Alkenyl Side Chains. Chemistry of Materials, 2014, 26, 4844-4848.	6.7	13
458	Construction of single-crystalline supramolecular networks of perchlorinated hexa- <i>peri</i> -hexabenzocoronene on Au(111). Journal of Chemical Physics, 2015, 142, 101911.	3.0	13
459	Sub-Nanometer Width Armchair Graphene Nanoribbon Energy Gap Atlas. Journal of Physical Chemistry Letters, 2015, 6, 3228-3235.	4.6	13
460	Dithieno[2,3-d;2′,3′-d]benzo[2,1-b;3,4-bâ€~]dithiophene: a novel building-block for a planar copolymer. Polymer Chemistry, 2016, 7, 1545-1548.	3.9	13
461	Amphiphilic dendrimers control protein binding and corona formation on liposome nanocarriers. Chemical Communications, 2020, 56, 8663-8666.	4.1	13
462	Detection and Stabilization of a Previously Unknown Two-Dimensional (Pseudo)polymorph using Lateral Nanoconfinement. Journal of the American Chemical Society, 2021, 143, 11080-11087.	13.7	13
463	Untying the Bundles of Solutionâ€Synthesized Graphene Nanoribbons for Highly Capacitive Microâ€Supercapacitors. Advanced Functional Materials, 2022, 32, 2109543.	14.9	13
464	A new on-surface synthetic pathway to 5-armchair graphene nanoribbons on Cu(111) surfaces. Faraday Discussions, 2017, 204, 297-305.	3.2	12
465	Efficiency-limiting processes in cyclopentadithiophene-bridged donor-acceptor-type dyes for solid-state dye-sensitized solar cells. Journal of Chemical Physics, 2018, 148, 044703.	3.0	12
466	Charging OBOâ€Fused Double [5]Helicene with Electrons. Angewandte Chemie, 2019, 131, 15111-15115.	2.0	12
467	Excited states engineering enables efficient near-infrared lasing in nanographenes. Materials Horizons, 2022, 9, 393-402.	12.2	12
468	Benzoâ€fused Tri[8]annulenes as Molecular Models of Cubic Graphite. Angewandte Chemie - International Edition, 2021, 60, 20220-20224.	13.8	12

#	Article	IF	CITATIONS
469	On-surface Synthesis of Graphene Nanoribbons through Solution-processing of Monomers. Chemistry Letters, 2017, 46, 1476-1478.	1.3	11
470	Direct and Energy-Transfer-Mediated Charge-Transfer State Formation and Recombination in Triangulene-Spacer-Perylenediimide Multichromophores: Lessons for Photovoltaic Applications. Journal of Physical Chemistry C, 2019, 123, 16602-16613.	3.1	11
471	Designing Multi‣evel Resistance States in Graphene Ferroelectric Transistors. Advanced Functional Materials, 2020, 30, 2003085.	14.9	11
472	Transformation from helical to layered supramolecular organization of asymmetric perylene diimides <i>via</i> multiple intermolecular hydrogen bonding. Chemical Science, 2020, 11, 4960-4968.	7.4	11
473	Structurally defined nanographene-containing conjugated polymers for high quality dispersions and optoelectronic applications. Polymer Chemistry, 2016, 7, 6211-6219.	3.9	10
474	Kinetically Trapped Supramolecular Assembly of Perylene Dianhydride Derivative in Methanol: Optical Spectra, Morphology, and Mechanisms. Chemistry - A European Journal, 2017, 23, 397-401.	3.3	10
475	Hydrogenâ€Bonded Donor–Acceptor Arrays at the Solution–Graphite Interface. Chemistry - A European Journal, 2018, 24, 12071-12077.	3.3	10
476	Color Sensitive Response of Graphene/Graphene Quantum Dot Phototransistors. Journal of Physical Chemistry C, 2019, 123, 26490-26497.	3.1	10
477	Small Change, Big Impact: The Shape of Precursor Polymers Governs Poly- <i>p</i> p-/i>-phenylene Synthesis. Macromolecules, 2019, 52, 4458-4463.	4.8	10
478	Tetrapodal Diazatriptycene Enforces Orthogonal Orientation in Self-Assembled Monolayers. ACS Applied Materials & Samp; Interfaces, 2020, 12, 6565-6572.	8.0	10
479	Hexa-peri-benzocoronene with two extra K-regions in an ortho-configuration. Chemical Science, 2020, 11, 12816-12821.	7.4	10
480	X-shaped thiadiazole-containing double [7]heterohelicene with strong chiroptical response and π-stacked homochiral assembly. Chemical Communications, 2021, 57, 5566-5569.	4.1	10
481	Dynamics of Structure Formation in a Discotic Liquid Crystal by Infrared Spectroscopy and Related Techniques. Journal of Physical Chemistry B, 2011, 115, 14919-14927.	2.6	9
482	Poly(ethylene glycol)-Functionalized Hexaphenylbenzenes as Unique Amphiphiles: Supramolecular Organization and Ion Conductivity. Macromolecules, 2014, 47, 5691-5702.	4.8	9
483	Tuning the HOMO energy levels in quinoline and biquinoline based donor-acceptor polymers. Journal of Polymer Research, 2016, 23, 1.	2.4	9
484	Cruciform Electron Acceptors Based on Tetraindeno-Fused Spirofluorene. Crystal Growth and Design, 2017, 17, 2816-2821.	3.0	9
485	A TPD-based determination of the graphite interlayer cohesion energy. Journal of Chemical Physics, 2018, 149, 194701.	3.0	9
486	Solubility Modulation of Polyfluorene Emitters by Thermally Induced (Retro)-Diels–Alder Cross-Linking of Cyclopentadienyl Substituents. Chemistry of Materials, 2018, 30, 4157-4167.	6.7	9

#	Article	IF	Citations
487	A Phenyleneâ€Bridged Cyclohexaâ€ <i>meta</i> å€phenylene as Hexaâ€ <i>peri</i> å€hexabenzocoronene Precurso Chemistry - A European Journal, 2018, 24, 11908-11910.	or 3.3	9
488	Palladium-Catalyzed Dimerization of Bis(2-biphenylyl)acetylene toward Sterically Hindered Acephenanthrylene. Organic Letters, 2018, 20, 3758-3761.	4.6	9
489	Pristine Poly(<i>para</i> -phenylene): Relating Semiconducting Behavior to Kinetics of Precursor Conversion. ACS Applied Materials & Interfaces, 2019, 11, 19481-19488.	8.0	9
490	Chemisorption of Atomically Precise 42-Carbon Graphene Quantum Dots on Metal Oxide Films Greatly Accelerates Interfacial Electron Transfer. Journal of Physical Chemistry Letters, 2019, 10, 1431-1436.	4.6	9
491	Regioselective Hydrogenation of a 60-Carbon Nanographene Molecule toward a Circumbiphenyl Core. Journal of the American Chemical Society, 2019, 141, 4230-4234.	13.7	9
492	Oligofluorene with multiple spiro-connections: its and their use in blue and white OLEDs. New Journal of Chemistry, 2019, 43, 3788-3792.	2.8	9
493	A Diketopyrrolopyrroleâ€Based Dimer as a Blue Pigment. Chemistry - A European Journal, 2019, 25, 2723-2728.	3.3	9
494	Hysteresis in graphene nanoribbon field-effect devices. Physical Chemistry Chemical Physics, 2020, 22, 5667-5672.	2.8	9
495	Spiers Memorial Lecture : Carbon nanostructures by macromolecular design – from branched polyphenylenes to nanographenes and graphene nanoribbons. Faraday Discussions, 2021, 227, 8-45.	3.2	9
496	Switchable dielectric permittivity with temperature and Dc-bias in a semifluorinated azobenzene derivative. Colloid and Polymer Science, 2014, 292, 1939-1948.	2.1	8
497	Derivatizing Tribenzothiopheneâ€Fused Hexaâ€ <i>peri</i> â€hexabenzocoronenes with Tunable Optoelectronic Properties. Chemistry - an Asian Journal, 2016, 11, 2107-2112.	3.3	8
498	Covalently Interlocked Cyclohexaâ€∢i>mà€phenylenes and Their Assembly: En Route to Supramolecular 3D Carbon Nanostructures. Angewandte Chemie - International Edition, 2017, 56, 10602-10606.	13.8	8
499	Tailoring the Emission of Fluorinated Bipyridine-Chelated Iridium Complexes. ACS Omega, 2018, 3, 13808-13816.	3.5	8
500	Multiwavelength Raman spectroscopy of ultranarrow nanoribbons made by solution-mediated bottom-up approach. Physical Review B, 2019, 100, .	3.2	8
501	Synthesis and helical supramolecular organization of discotic liquid crystalline dibenzo[<i>hi</i> , <i>st</i>]ovalene. Journal of Materials Chemistry C, 2019, 7, 12898-12906.	5.5	8
502	Dicyclopentaannelated Hexaâ€ <i>peri</i> â€hexabenzocoronenes with a Singlet Biradical Ground State. Angewandte Chemie, 2021, 133, 11400-11404.	2.0	8
503	Raman spectroscopy of holey nanographene C216 . Journal of Raman Spectroscopy, 2021, 52, 2301-2316.	2.5	8
504	Kinetic Stabilization of Blueâ€Emissive Anthracenes: Phenylene Bridging Works Best. Chemistry - A European Journal, 2021, 27, 16606-16610.	3.3	8

#	Article	IF	Citations
505	Reversing A <i>\hat{J}^2</i> Fibrillation and Inhibiting A <i>\hat{J}^2</i> Primary Neuronal Cell Toxicity Using Amphiphilic Polyphenylene Dendrons. Advanced Healthcare Materials, 2022, 11, e2101854.	7.6	8
506	Coveâ€Edged Hexaâ€ <i>peri</i> â€hexabenzoâ€bisâ€ <i>peri</i> â€octacene: Molecular Conformations and Ampli Spontaneous Emission. Angewandte Chemie, 2022, 134, .	fied 2.0	8
507	Optical switching studies of an azobenzene rigidly linked toÂaÂhexa-peri-hexabenzocoronene derivative in solution andÂatÂaÂsolid–liquid interface. Applied Physics A: Materials Science and Processing, 2008, 93, 277-283.	2.3	7
508	Monitoring the On-Surface Synthesis of Graphene Nanoribbons by Mass Spectrometry. Analytical Chemistry, 2017, 89, 7485-7492.	6.5	7
509	Direct Metalâ€Free Chemical Vapor Deposition of Graphene Films on Insulating Substrates for Microâ€Supercapacitors with High Volumetric Capacitance. Batteries and Supercaps, 2019, 2, 929-933.	4.7	7
510	Doping free transfer of graphene using aqueous ammonia flow. RSC Advances, 2020, 10, 1127-1131.	3.6	7
511	Rigidification of Poly(<i>p</i> -phenylene)s through <i>ortho</i> -Phenyl Substitution. Macromolecules, 2020, 53, 5756-5762.	4.8	7
512	Oligophenyls with Multiple Disulfide Bridges as Higher Homologues of Dibenzo[<i><(i><(i><(i),<i><(i>)][1,2]dithiin: Synthesis and Application in Lithiumâ€ion Batteries. Chemistry - A European Journal, 2020, 26, 8007-8011.</i></i>	3.3	7
513	Photodynamics at the CdSe Quantum Dot–Perylene Diimide Interface: Unraveling the Excitation Energy and Electron Transfer Pathways. Journal of Physical Chemistry C, 2021, 125, 3277-3284.	3.1	7
514	Self-assembly beyond semifluorinated alkanes in a semifluorinated benzene derivative. Soft Matter, 2013, 9, 11334.	2.7	6
515	Dimensional Confinement in Carbonâ€based Structures – From 3D to 1D. Annalen Der Physik, 2017, 529, 1700051.	2.4	6
516	Graphene nanoribbons on hexagonal boron nitride: Deposition and transport characterization. Applied Physics Letters, 2019, 114, 173101.	3.3	6
517	Stepwise Lateral Extension of Phenylâ€Substituted Linear Polyphenylenes. Macromolecular Chemistry and Physics, 2020, 221, 1900374.	2.2	6
518	Size-dependent electron transfer from atomically defined nanographenes to metal oxide nanoparticles. Nanoscale, 2020, 12, 16046-16052.	5.6	6
519	Compressing Double [7]Helicene by Successive Charging with Electrons. Angewandte Chemie, 2020, 132, 16057-16061.	2.0	6
520	Polarity Matters: Dielectric Relaxation in All- <i>cis</i> -Multifluorinated Cycloalkanes. Journal of Physical Chemistry B, 2021, 125, 3700-3709.	2.6	6
521	Graphene Nanoribbon Field-Effect Transistors with Top-Gate Polymer Dielectrics. ACS Applied Electronic Materials, 2022, 4, 2667-2671.	4.3	6
522	Bulky, dendronized iridium complexes and their photoluminescence. Journal of Materials Chemistry C, 2019, 7, 15252-15258.	5.5	5

#	Article	IF	CITATIONS
523	Compensation of Oxygen Doping in pâ€Type Organic Fieldâ€Effect Transistors Utilizing Immobilized nâ€Dopants. Advanced Materials Technologies, 2021, 6, 2000556.	5.8	5
524	Chryseneâ€Based Blue Emitters. Chemistry - A European Journal, 2020, 26, 15089-15093.	3.3	5
525	Functionalized Tetrapodal Diazatriptycenes for Electrostatic Dipole Engineering in n‶ype Organic Thin Film Transistors. Advanced Materials Technologies, 2021, 6, 2000300.	5.8	5
526	Benzoâ€fused Tri[8]annulenes as Molecular Models of Cubic Graphite. Angewandte Chemie, 2021, 133, 20382-20386.	2.0	5
527	Tuning interfacial charge transfer in atomically precise nanographene–graphene heterostructures by engineering van der Waals interactions. Journal of Chemical Physics, 2022, 156, 074702.	3.0	5
528	Band structure modulation by methoxy-functionalization of graphene nanoribbons. Journal of Materials Chemistry C, 2022, 10, 4173-4181.	5.5	5
529	Structure and Energy Spectra of a Class of Polybenzenoid <i>Clar</i> 's Hydrocarbons and 1-D Polymers. Polycyclic Aromatic Compounds, 1999, 13, 241-259.	2.6	4
530	Nanographene: ultrastabile, schaltbare und helle Sonden fýr die hochauflösende Mikroskopie. Angewandte Chemie, 2020, 132, 504-510.	2.0	4
531	Spatially and Temporally Resolved Heterogeneities in a Miscible Polymer Blend. ACS Omega, 2020, 5, 23931-23939.	3.5	4
532	Oligomerization of Dehydrogenated Polycyclic Aromatic Hydrocarbons on Highly Oriented Pyrolytic Graphite. Journal of Physical Chemistry C, 2020, 124, 8236-8246.	3.1	4
533	2D self-assembly and electronic characterization of oxygen–boron–oxygen-doped chiral graphene nanoribbons. Chemical Communications, 2021, 57, 6031-6034.	4.1	4
534	Self-assembly and photoinduced fabrication of conductive nanographene wires on boron nitride. Nature Communications, 2022, 13, 442.	12.8	4
535	Synthesis of Giant Dendritic Polyphenylenes with 366 and 546 Carbon Atoms and Their Highâ€vacuum Electrospray Deposition. Chemistry - an Asian Journal, 2022, 17, .	3.3	4
536	Crosslinking Super Yellow to produce super OLEDs: Crosslinking with azides enables improved performance. Journal of Polymer Science, 2022, 60, 1878-1886.	3.8	4
537	Shape Persistence in Polymers and Supramolecular Assemblies. Materials and Energy, 2018, , 1-28.	0.1	3
538	Molecular Ordering of Dithieno[2,3- <i>d</i> ;2′,3′- <i>d</i>]benzo[2,1- <i>b</i> :3,4- <i>b</i> ′]dithiophene for Field-Effect Transistors. ACS Omega, 2018, 3, 6513-6522.	S _{3.5}	3
539	Vibrational signature of the graphene nanoribbon edge structure from high-resolution electron energy-loss spectroscopy. Nanoscale, 2020, 12, 19681-19688.	5.6	3
540	Utilizing Diels–Alder "click―chemistry to functionalize the organic–organic interface of semiconducting polymers. Journal of Materials Chemistry C, 2020, 8, 3302-3307.	5.5	3

#	Article	IF	Citations
541	Beyond <i>p</i> â€Hexaphenylenes: Synthesis of Unsubstituted <i>p</i> â€Nonaphenylene by a Precursor Protocol. Chemistry - A European Journal, 2021, 27, 281-288.	3.3	3
542	Exploring Intramolecular Methyl–Methyl Coupling on a Metal Surface for Edge-Extended Graphene Nanoribbons. Organic Materials, 2021, 03, 128-133.	2.0	3
543	Electrochemical Deposition of a Singleâ€Crystalline Nanorod Polycyclic Aromatic Hydrocarbon Film with Efficient Charge and Exciton Transport. Angewandte Chemie, 2022, 134, .	2.0	3
544	Strictly Alternating Sequences When Copolymerizing Racemic and Chiral Acetylene Monomers with an Organo-Rhodium Catalyst. Macromolecules, 2017, 50, 1291-1301.	4.8	2
545	State transition identification in multivariate time series (STIMTS) applied to rotational jump trajectories from single molecules. Journal of Chemical Physics, 2018, 149, 164104.	3.0	2
546	From Hexaphenylbenzene to 1,2,3,4,5,6-Hexacyclohexylcyclohexane. Journal of the American Chemical Society, 2020, 142, 12916-12920.	13.7	2
547	Amphiphilic Polyphenylene Dendron Conjugates for Surface Remodeling of Adenovirusâ€5. Angewandte Chemie, 2020, 132, 5761-5769.	2.0	2
548	A Nanographeneâ€Based Twoâ€Dimensional Covalent Organic Framework as a Stable and Efficient Photocatalyst. Angewandte Chemie, 2022, 134, .	2.0	2
549	Kovalent gebundene, ineinander verkettete Cyclohexaâ€ <i>m</i> â€phenylene und ihre Selbstorganisation: Auf dem Weg zu supramolekularen 3Dâ€Kohlenstoffnanostrukturen. Angewandte Chemie, 2017, 129, 10738-10742.	2.0	1
550	Dipolar Relaxation in Functionalized Poly- $\langle i \rangle p \langle i \rangle$ -phenylenes Bearing Ultrastrong Dipoles Perpendicular to the Backbone. Macromolecules, 2018, 51, 3330-3339.	4.8	1
551	Comparative Study of Direct and Graphite-Mediated Oxidation of Large PAHs. Journal of Physical Chemistry C, 2021, 125, 8163-8176.	3.1	1
552	Structure and Energy Spectra of a Class of Polybenzenoid Clar's Hydrocarbons and 1-D Polymers. Polycyclic Aromatic Compounds, 2000, 18, 99-116.	2.6	0
553	Macromol. Chem. Phys. 2/2010. Macromolecular Chemistry and Physics, 2010, 211, .	2.2	0
554	Direct Metalâ€Free Chemical Vapor Deposition of Graphene Films on Insulating Substrates for Microâ€Supercapacitors with High Volumetric Capacitance. Batteries and Supercaps, 2019, 2, 896-896.	4.7	0
555	Engineering Surface Amphiphilicity of Polymer Nanostructures. Progress in Polymer Science, 2021, , 101489.	24.7	0
556	Excitation localization in a trimeric perylenediimide macrocycle: Synthesis, theory, and single molecule spectroscopy. Journal of Chemical Physics, 2022, 156, 044304.	3.0	0