Teresa Millan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7804296/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The <i>SINGLE FLOWER (SFL)</i> gene encodes a MYB transcription factor that regulates the number of flowers produced by the inflorescence of chickpea. New Phytologist, 2022, 234, 827-836.	3.5	6
2	Aldehyde Dehydrogenase 3 Is an Expanded Gene Family with Potential Adaptive Roles in Chickpea. Plants, 2021, 10, 2429.	1.6	3
3	Genetic diversity and population structure of Algerian chickpea (Cicer arietinum) genotypes: use of agro-morphological traits and molecular markers linked or not linked to the gene or QTL of interest. Crop and Pasture Science, 2020, 71, 155.	0.7	9
4	Genetic analysis reveals PDH1 as a candidate gene for control of pod dehiscence in chickpea. Molecular Breeding, 2020, 40, 1.	1.0	14
5	Altered Expression of an FT Cluster Underlies a Major Locus Controlling Domestication-Related Changes to Chickpea Phenology and Growth Habit. Frontiers in Plant Science, 2019, 10, 824.	1.7	38
6	Candidate genes expression profiling during wilting in chickpea caused by Fusarium oxysporum f. sp. ciceris race 5. PLoS ONE, 2019, 14, e0224212.	1.1	18
7	Saturation of genomic region implicated in resistance to Fusarium oxysporum f. sp. ciceris race 5 in chickpea. Molecular Breeding, 2019, 39, 1.	1.0	13
8	Genome-wide identification of the auxin response factor gene family in Cicer arietinum. BMC Genomics, 2018, 19, 301.	1.2	40
9	Assessment of genetic diversity in IranianAsparagus spp.related to garden asparagus. Acta Horticulturae, 2018, , 39-44.	0.1	4
10	STMS (sequence tagged microsatellite site) molecular markers as a valuable tool to confirm controlled crosses in chickpea (Cicer arietinum L.) breeding programs. Euphytica, 2018, 214, 1.	0.6	9
11	Segmental and Tandem Duplications Driving the Recent NBS-LRR Gene Expansion in the Asparagus Genome. Genes, 2018, 9, 568.	1.0	18
12	Integration of Genetic and Cytogenetic Maps and Identification of Sex Chromosome in Garden Asparagus (Asparagus officinalis L.). Frontiers in Plant Science, 2018, 9, 1068.	1.7	18
13	Genetic Mapping and Quantitative Trait Loci. Compendium of Plant Genomes, 2017, , 83-106.	0.3	1
14	Development of new kabuli large-seeded chickpea materials with resistance to Ascochyta blight. Crop and Pasture Science, 2017, 68, 967.	0.7	6
15	Identification of the target region including the Foc0 1 /foc0 1 gene and development of near isogenic lines for resistance to Fusarium Wilt race 0 in chickpea. Euphytica, 2016, 210, 119-133.	0.6	15
16	Fine mapping for double podding gene in chickpea. Theoretical and Applied Genetics, 2016, 129, 77-86.	1.8	21
17	TOWARDS THE ROSE GENOME SEQUENCE AND ITS USE IN RESEARCH AND BREEDING. Acta Horticulturae, 2015, , 167-175.	0.1	11
18	Genetic control of inflorescence architecture in legumes. Frontiers in Plant Science, 2015, 6, 543.	1.7	76

TERESA MILLAN

#	Article	IF	CITATIONS
19	Detection of a new QTL/gene for growth habit in chickpea CaLG1 using wide and narrow crosses. Euphytica, 2015, 204, 473-485.	0.6	15
20	Efficiency of marker-assisted selection for ascochyta blight in chickpea. Journal of Agricultural Science, 2015, 153, 56-67.	0.6	25
21	Chickpea. Handbook of Plant Breeding, 2015, , 85-109.	0.1	9

Genetic and physical mapping of the QTLAR3 controlling blight resistance in chickpea (Cicer arietinum) Tj ETQq0 0 $\underset{0.0}{0}$ rgBT /Overlock 10

23	Mapping and identification of a Cicer arietinum NSP2 gene involved in nodulation pathway. Theoretical and Applied Genetics, 2014, 127, 481-488.	1.8	19
24	A chromosomal genomics approach to assess and validate the <i>desi</i> and <i>kabuli</i> draft chickpea genome assemblies. Plant Biotechnology Journal, 2014, 12, 778-786.	4.1	54
25	Draft genome sequence of chickpea (Cicer arietinum) provides a resource for trait improvement. Nature Biotechnology, 2013, 31, 240-246.	9.4	1,049
26	Allele-specific amplification for the detection of ascochyta blight resistance in chickpea. Euphytica, 2013, 189, 183-190.	0.6	38
27	Sort communication. Genotype × environment interaction analysis in two chickpea RIL populations. Spanish Journal of Agricultural Research, 2013, 11, 808.	0.3	1
28	Characterization and genetic analysis of an EIN4-like sequence (CaETR-1) located in QTLAR1 implicated in ascochyta blight resistance in chickpea. Plant Cell Reports, 2012, 31, 1033-1042.	2.8	33
29	Identification of chickpea cultivars by microsatellite markers. Journal of Agricultural Science, 2011, 149, 451-460.	0.6	7
30	A segregation distortion locus located on linkage group 4 of the chickpea genetic map. Euphytica, 2011, 179, 515-523.	0.6	16
31	Integration of genetic and physical maps of the chickpea (Cicer arietinum L.) genome using flow-sorted chromosomes. Chromosome Research, 2011, 19, 729-739.	1.0	34
32	Transcription factor profiling leading to the identification of putative transcription factors involved in the Medicago truncatula–Uromyces striatus interaction. Theoretical and Applied Genetics, 2010, 121, 1311-1321.	1.8	17
33	Development of chickpea near-isogenic lines for fusarium wilt. Theoretical and Applied Genetics, 2010, 121, 1519-1526.	1.8	37
34	A consensus genetic map of chickpea (Cicer arietinum L.) based on 10 mapping populations. Euphytica, 2010, 175, 175-189.	0.6	101
35	Tagging and mapping a second resistance gene for Fusarium wilt race 0 in chickpea. European Journal of Plant Pathology, 2009, 124, 87-92.	0.8	38
36	Integration of new CAPS and dCAPS-RGA markers into a composite chickpea genetic map and their association with disease resistance. Theoretical and Applied Genetics, 2009, 118, 671-682.	1.8	30

TERESA MILLAN

#	Article	IF	CITATIONS
37	The marker SCK13603 associated with resistance to ascochyta blight in chickpea is located in a region of a putative retrotransposon. Plant Cell Reports, 2009, 28, 53-60.	2.8	15
38	Resistance in chickpea (Cicer arietinum) to Fusarium wilt race â€~0'. Plant Breeding, 2009, 129, 563.	1.0	6
39	Genetic analysis of agronomic traits in a wide cross of chickpea. Field Crops Research, 2009, 111, 130-136.	2.3	108
40	Mechanism and molecular markers associated with rust resistance in a chickpea interspecific cross (Cicer arietinum × Cicer reticulatum). European Journal of Plant Pathology, 2008, 121, 43-53.	0.8	54
41	Validation of a QTL for resistance to ascochyta blight linked to resistance to fusarium wilt race 5 in chickpea (Cicer arietinum L.). , 2007, , 29-37.		7
42	Genetic analysis of seed size, yield and days to flowering in a chickpea recombinant inbred line population derived from a Kabuli�×Desi cross. Annals of Applied Biology, 2007, 151, 33-42.	1.3	69
43	Validation of a QTL for resistance to ascochyta blight linked to resistance to fusarium wilt race 5 in chickpea (Cicer arietinum L.). European Journal of Plant Pathology, 2007, 119, 29-37.	0.8	67
44	A new QTL for Ascochyta blight resistance in an RIL population derived from an interspecific cross in chickpea. Euphytica, 2006, 149, 105-111.	0.6	70
45	Chickpea molecular breeding: New tools and concepts. Euphytica, 2006, 147, 81-103.	0.6	135
46	Ploidic and Molecular Analysis of â€~Morado de Huetor' Asparagus (Asparagus officinale L.) Population; A Spanish Tetraploid Landrace. Genetic Resources and Crop Evolution, 2006, 53, 729-736.	0.8	51
47	Detection of two quantitative trait loci for resistance to ascochyta blight in an intra-specific cross of chickpea (Cicer arietinum L.): development of SCAR markers associated with resistance. Theoretical and Applied Genetics, 2006, 112, 278-287.	1.8	107
48	A linkage map of chickpea (Cicer arietinum L.) based on populations from Kabuli × Desi crosses: location of genes for resistance to fusarium wilt race 0. Theoretical and Applied Genetics, 2005, 110, 1347-1353.	1.8	106
49	Genetic mapping of QTLs controlling horticultural traits in diploid roses. Theoretical and Applied Genetics, 2005, 111, 511-520.	1.8	88
50	Two genes and linked RAPD markers involved in resistance to Fusarium oxysporum f. sp. Ciceris race 0 in chickpea. Plant Breeding, 2003, 122, 188-191.	1.0	59
51	Markers associated with Ascochyta blight resistance in chickpea and their potential in marker-assisted selection. Field Crops Research, 2003, 84, 373-384.	2.3	71
52	Phylogenetic analysis in the genus Cicer and cultivated chickpea using RAPD and ISSR markers. Theoretical and Applied Genetics, 2002, 104, 643-651.	1.8	148
53	Physical mapping of ribosomal DNA on several species of the subgenus Rosa. Theoretical and Applied Genetics, 2001, 103, 835-838.	1.8	30
54	VARIETAL IDENTIFICATION IN ROSA BY USING ISOZYME AND RAPD MARKERS. Acta Horticulturae, 1996, , 261-264.	0.1	6

TERESA MILLAN

#	Article	IF	CITATIONS
55	Using RAPDs to study phylogenetic relationships in Rosa. Theoretical and Applied Genetics, 1996, 92, 273-277.	1.8	28
56	Comparative RFLP maps of the homoeologous group-2 chromosomes of wheat, rye and barley. Theoretical and Applied Genetics, 1993, 85-85, 784-792.	1.8	239
57	Chromosomal location and RFLP utility in wheat and barley of a wheat gene with homology to a 7S storage-globulin sequence. Theoretical and Applied Genetics, 1992, 85, 387-388.	1.8	5
58	Effects of Hordeum chilense and Triticum Cytoplasms on Agronomical Traits in Hexaploid Tritordeum. Plant Breeding, 1992, 108, 328-331.	1.0	12
59	Tritordeum: A New Alloploid of Potential Importance as a Protein Source Crop 1. Crop Science, 1986, 26, 1186-1190.	0.8	50