
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7804162/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Respiratory Microbiome in Health and Disease. , 2022, , 177-184.		Ο
2	Lung function trajectory in progressive fibrosing interstitial lung disease. European Respiratory Journal, 2022, 59, 2101396.	3.1	40
3	Autoantibodies are present in the bronchoalveolar lavage but not circulation in patients with fibrotic interstitial lung disease. ERJ Open Research, 2022, 8, 00481-2021.	1.1	1
4	Candidate Role for Toll-like Receptor 3 L412F Polymorphism and Infection in Acute Exacerbation of Idiopathic Pulmonary Fibrosis. American Journal of Respiratory and Critical Care Medicine, 2022, 205, 550-562.	2.5	12
5	Lung Microbiome in Idiopathic Pulmonary Fibrosis and Other Interstitial Lung Diseases. International Journal of Molecular Sciences, 2022, 23, 977.	1.8	14
6	Immuno-proteomic profiling reveals aberrant immune cell regulation in the airways of individuals with ongoing post-COVID-19 respiratory disease. Immunity, 2022, 55, 542-556.e5.	6.6	96
7	Wearable In-Ear PPG: Detailed Respiratory Variations Enable Classification of COPD. IEEE Transactions on Biomedical Engineering, 2022, 69, 2390-2400.	2.5	17
8	Airway mucins promote immunopathology in virus-exacerbated chronic obstructive pulmonary disease. Journal of Clinical Investigation, 2022, 132, .	3.9	27
9	PAciFy Cough—a multicentre, double-blind, placebo-controlled, crossover trial of morphine sulphate for the treatment of pulmonary Fibrosis Cough. Trials, 2022, 23, 184.	0.7	6
10	Rare and Common Variants in <i>KIF15</i> Contribute to Genetic Risk of Idiopathic Pulmonary Fibrosis. American Journal of Respiratory and Critical Care Medicine, 2022, 206, 56-69.	2.5	25
11	Interstitial lung disease incidence and mortality in the UK and the European Union: an observational study, 2001–2017. ERJ Open Research, 2022, 8, 00058-2022.	1.1	11
12	The Respiratory Microbiome in Chronic Hypersensitivity Pneumonitis Is Distinct from That of Idiopathic Pulmonary Fibrosis. American Journal of Respiratory and Critical Care Medicine, 2021, 203, 339-347.	2.5	45
13	Proportion of Idiopathic Pulmonary Fibrosis Risk Explained by Known Common Genetic Loci in European Populations. American Journal of Respiratory and Critical Care Medicine, 2021, 203, 775-778.	2.5	17
14	Target inhibition of galectin-3 by inhaled TD139 in patients with idiopathic pulmonary fibrosis. European Respiratory Journal, 2021, 57, 2002559.	3.1	106
15	Serum markers of pulmonary epithelial damage in systemic sclerosisâ€associated interstitial lung disease and disease progression. Respirology, 2021, 26, 461-468.	1.3	30
16	BAL Is Safe and Well Tolerated in Individuals with Idiopathic Pulmonary Fibrosis: An Analysis of the PROFILE Study. American Journal of Respiratory and Critical Care Medicine, 2021, 203, 136-139.	2.5	15
17	The microbiome in IPF: tissue is not the issue. Thorax, 2021, 76, 218-218.	2.7	1
18	Blood Transcriptomics Predicts Progression of Pulmonary Fibrosis and Associated Natural Killer Cells. American Journal of Respiratory and Critical Care Medicine, 2021, 204, 197-208.	2.5	27

#	Article	IF	CITATIONS
19	Early prognostication of COVID-19 to guide hospitalisation versus outpatient monitoring using a point-of-test risk prediction score. Thorax, 2021, 76, 696-703.	2.7	24
20	Identification of a missense variant in SPDL1 associated with idiopathic pulmonary fibrosis. Communications Biology, 2021, 4, 392.	2.0	28
21	The burden of progressive fibrotic interstitial lung disease across the UK. European Respiratory Journal, 2021, 58, 2100221.	3.1	39
22	Persistent Post–COVID-19 Interstitial Lung Disease. An Observational Study of Corticosteroid Treatment. Annals of the American Thoracic Society, 2021, 18, 799-806.	1.5	306
23	Enhanced IL-1β Release Following NLRP3 and AIM2 Inflammasome Stimulation Is Linked to mtROS in Airway Macrophages in Pulmonary Fibrosis. Frontiers in Immunology, 2021, 12, 661811.	2.2	43
24	DNA Methylome Alterations Are Associated with Airway Macrophage Differentiation and Phenotype during Lung Fibrosis. American Journal of Respiratory and Critical Care Medicine, 2021, 204, 954-966.	2.5	17
25	50-gene risk profiles in peripheral blood predict COVID-19 outcomes: A retrospective, multicenter cohort study. EBioMedicine, 2021, 69, 103439.	2.7	20
26	Monocyte Count as a Prognostic Biomarker in Patients with Idiopathic Pulmonary Fibrosis. American Journal of Respiratory and Critical Care Medicine, 2021, 204, 74-81.	2.5	107
27	Choosing pharmacotherapy for ILD in patients with connective tissue disease. Breathe, 2021, 17, 210114.	0.6	1
28	Right Ventricular to Left Ventricular Ratio atÂCT Pulmonary Angiogram Predicts Mortality in Interstitial Lung Disease. Chest, 2020, 157, 89-98.	0.4	30
29	Physiological predictors of exertional oxygen desaturation in patients with fibrotic interstitial lung disease. European Respiratory Journal, 2020, 55, 1901681.	3.1	11
30	Methods in Lung Microbiome Research. American Journal of Respiratory Cell and Molecular Biology, 2020, 62, 283-299.	1.4	94
31	Genome-Wide Association Study of Susceptibility to Idiopathic Pulmonary Fibrosis. American Journal of Respiratory and Critical Care Medicine, 2020, 201, 564-574.	2.5	208
32	Defining genetic risk factors for scleroderma-associated interstitial lung disease. Clinical Rheumatology, 2020, 39, 1173-1179.	1.0	12
33	Utility of Nuclear Grading System in Epithelioid Malignant Pleural Mesothelioma in Biopsy-heavy Setting. American Journal of Surgical Pathology, 2020, 44, 347-356.	2.1	25
34	Outcome of Hospitalization for COVID-19 in Patients with Interstitial Lung Disease. An International Multicenter Study. American Journal of Respiratory and Critical Care Medicine, 2020, 202, 1656-1665.	2.5	171
35	Dynamics of human monocytes and airway macrophages during healthy aging and after transplant. Journal of Experimental Medicine, 2020, 217, .	4.2	113
36	Itaconate controls the severity of pulmonary fibrosis. Science Immunology, 2020, 5, .	5.6	73

#	Article	IF	CITATIONS
37	Progressive fibrosing interstitial lung disease: clinical uncertainties, consensus recommendations, and research priorities. Lancet Respiratory Medicine,the, 2020, 8, 925-934.	5.2	198
38	Respiratory microbiome and epithelial interactions shape immunity in the lungs. Immunology, 2020, 160, 171-182.	2.0	103
39	Interaction between the promoter MUC5B polymorphism and mucin expression: is there a difference according to ILD subtype?. Thorax, 2020, 75, 901-903.	2.7	8
40	Bacterial burden in the lower airways predicts disease progression in idiopathic pulmonary fibrosis and is independent of radiological disease extent. European Respiratory Journal, 2020, 55, 1901519.	3.1	42
41	A Systematically Derived Exposure Assessment Instrument for Chronic Hypersensitivity Pneumonitis. Chest, 2020, 157, 1506-1512.	0.4	33
42	Presence of pleomorphic features but not growth patterns improves prognostic stratification of epithelioid malignant pleural mesothelioma by 2â€ŧier nuclear grade. Histopathology, 2020, 77, 423-436.	1.6	9
43	A positron emission tomography imaging study to confirm target engagement in the lungs of patients with idiopathic pulmonary fibrosis following a single dose of a novel inhaled αvβ6 integrin inhibitor. Respiratory Research, 2020, 21, 75.	1.4	41
44	Biomarkers of collagen synthesis predict progression in the PROFILE idiopathic pulmonary fibrosis cohort. Respiratory Research, 2019, 20, 148.	1.4	77
45	The contribution of infection and theÂrespiratory microbiome in acute exacerbations of idiopathic pulmonary fibrosis. European Respiratory Review, 2019, 28, 190045.	3.0	37
46	The Role of the Lung's Microbiome in the Pathogenesis and Progression of Idiopathic Pulmonary Fibrosis. International Journal of Molecular Sciences, 2019, 20, 5618.	1.8	41
47	Modelling Forced Vital Capacity in Idiopathic Pulmonary Fibrosis: Optimising Trial Design. Advances in Therapy, 2019, 36, 3059-3070.	1.3	4
48	The Transferrin Receptor CD71 Delineates Functionally Distinct Airway Macrophage Subsets during Idiopathic Pulmonary Fibrosis. American Journal of Respiratory and Critical Care Medicine, 2019, 200, 209-219.	2.5	82
49	Resequencing Study Confirms That Host Defense and Cell Senescence Gene Variants Contribute to the Risk of Idiopathic Pulmonary Fibrosis. American Journal of Respiratory and Critical Care Medicine, 2019, 200, 199-208.	2.5	90
50	Evaluation of a re-useable bronchoscopy biosimulator with ventilated lungs. ERJ Open Research, 2019, 5, 00035-2019.	1.1	5
51	In patients with idiopathic pulmonary fibrosis the presence of hiatus hernia isÂassociated with disease progression andÂmortality. European Respiratory Journal, 2019, 53, 1802412.	3.1	20
52	A randomised, placebo-controlled study of omipalisib (PI3K/mTOR) in idiopathic pulmonary fibrosis. European Respiratory Journal, 2019, 53, 1801992.	3.1	101
53	The Challenging Road of Moving from Association to Causation for Microbiome Research in Idiopathic Pulmonary Fibrosis. American Journal of Respiratory and Critical Care Medicine, 2019, 199, 1054-1056.	2.5	6
54	Regularized Latent Class Model for Joint Analysis of High-Dimensional Longitudinal Biomarkers and a Time-to-Event Outcome. Biometrics, 2019, 75, 69-77.	0.8	7

#	Article	IF	CITATIONS
55	The potential impact of azithromycin in idiopathic pulmonary fibrosis. European Respiratory Journal, 2019, 53, 1800628.	3.1	32
56	Interstitial lung disease. , 2019, , 173-187.		1
57	Rapidly Progressive Cystic Lung Disease. American Journal of Respiratory and Critical Care Medicine, 2018, 198, 264-264.	2.5	2
58	Role of airway glucose in bacterial infections in patients with chronic obstructive pulmonary disease. Journal of Allergy and Clinical Immunology, 2018, 142, 815-823.e6.	1.5	63
59	PD-1 up-regulation on CD4 ⁺ T cells promotes pulmonary fibrosis through STAT3-mediated IL-17A and TGF-β1 production. Science Translational Medicine, 2018, 10, .	5.8	225
60	Effect of ambulatory oxygen on quality of life for patients with fibrotic lung disease (AmbOx): a prospective, open-label, mixed-method, crossover randomised controlled trial. Lancet Respiratory Medicine,the, 2018, 6, 759-770.	5.2	145
61	Clinical Genetics in Interstitial Lung Disease. Frontiers in Medicine, 2018, 5, 116.	1.2	19
62	Could quality be the key in connective tissue diseaseâ€associated interstitial lung disease?. Respirology, 2018, 23, 801-802.	1.3	0
63	Review of the British Thoracic Society Winter Meeting 2017, 6–8 December 2017, London, UK. Thorax, 2018, 73, 872-876.	2.7	Ο
64	Host–Microbial Interactions in Idiopathic Pulmonary Fibrosis. American Journal of Respiratory and Critical Care Medicine, 2017, 195, 1640-1650.	2.5	169
65	Changes in the respiratory microbiome during acute exacerbations of idiopathic pulmonary fibrosis. Respiratory Research, 2017, 18, 29.	1.4	156
66	The microbiome in respiratory medicine: current challenges and future perspectives. European Respiratory Journal, 2017, 49, 1602086.	3.1	194
67	Genetic variants associated with susceptibility to idiopathic pulmonary fibrosis in people of European ancestry: a genome-wide association study. Lancet Respiratory Medicine,the, 2017, 5, 869-880.	5.2	233
68	Validation of a 52-gene risk profile for outcome prediction in patients with idiopathic pulmonary fibrosis: an international, multicentre, cohort study. Lancet Respiratory Medicine,the, 2017, 5, 857-868.	5.2	115
69	Time for an International Consensus on Hypersensitivity Pneumonitis. A Call to Arms. American Journal of Respiratory and Critical Care Medicine, 2017, 196, 665-666.	2.5	18
70	An epithelial biomarker signature for idiopathic pulmonary fibrosis: an analysis from the multicentre PROFILE cohort study. Lancet Respiratory Medicine,the, 2017, 5, 946-955.	5.2	190
71	Microbiome in interstitial lung disease. Current Opinion in Pulmonary Medicine, 2017, 23, 404-410.	1.2	41
72	The histone deacetylase inhibitor, romidepsin, as a potential treatment for pulmonary fibrosis. Oncotarget, 2017, 8, 48737-48754.	0.8	48

#	Article	IF	CITATIONS
73	The respiratory microbiome in idiopathic pulmonary fibrosis. Annals of Translational Medicine, 2017, 5, 250-250.	0.7	48
74	Daily Home Spirometry: An Effective Tool for Detecting Progression in Idiopathic Pulmonary Fibrosis. American Journal of Respiratory and Critical Care Medicine, 2016, 194, 989-997.	2.5	138
75	Longitudinal change in collagen degradation biomarkers in idiopathic pulmonary fibrosis: an analysis from the prospective, multicentre PROFILE study. Lancet Respiratory Medicine,the, 2015, 3, 462-472.	5.2	252
76	Respiratory microbiome in IPF: cause, effect, or biomarker?. Lancet Respiratory Medicine,the, 2014, 2, 511-513.	5.2	24
77	Genome-wide association study identifies multiple susceptibility loci for pulmonary fibrosis. Nature Genetics, 2013, 45, 613-620.	9.4	667
78	Outgrowth of the Bacterial Airway Microbiome after Rhinovirus Exacerbation of Chronic Obstructive Pulmonary Disease. American Journal of Respiratory and Critical Care Medicine, 2013, 188, 1224-1231.	2.5	329
79	Mucin 5B promoter polymorphism is associated with idiopathic pulmonary fibrosis but not with development of lung fibrosis in systemic sclerosis or sarcoidosis. Thorax, 2013, 68, 436-441.	2.7	193
80	The role of infection in the pathogenesis of idiopathic pulmonary fibrosis. European Respiratory Review, 2013, 22, 376-381.	3.0	148
81	Evaluation of screening methods for identification of patients with chronic rheumatological disease requiring tuberculosis chemoprophylaxis prior to commencement of TNF-α antagonist therapy. Thorax, 2013, 68, 955-961.	2.7	29
82	Reducing lung function decline in patients with idiopathic pulmonary fibrosis: potential of nintedanib. Drug Design, Development and Therapy, 2013, 7, 503.	2.0	17
83	A Comparison between Two Strategies for Monitoring Hepatic Function during Antituberculous Therapy. American Journal of Respiratory and Critical Care Medicine, 2012, 185, 653-659.	2.5	44
84	Lung microbiology and exacerbations in COPD. International Journal of COPD, 2012, 7, 555.	0.9	101
85	Utility of endobronchial ultrasound-guided transbronchial needle aspiration in patients with tuberculous intrathoracic lymphadenopathy: a multicentre study. Thorax, 2011, 66, 889-893.	2.7	166