
Juno Kim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7803715/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Automated analysis of corneal nerve tortuosity in diabetes: implications for neuropathy detection. Australasian journal of optometry, The, 2022, 105, 487-493.	1.3	3
2	Effects of display lag on vection and presence in the Oculus Rift HMD. Virtual Reality, 2022, 26, 425-436.	6.1	5
3	Vision Impairment Provides New Insight Into Self-Motion Perception. , 2021, 62, 4.		6
4	Spatial presence depends on â€~coupling' between body sway and visual motion presented on head-mounted displays (HMDs). Applied Ergonomics, 2021, 92, 103355.	3.1	8
5	Effects of Linear Visual-Vestibular Conflict on Presence, Perceived Scene Stability and Cybersickness in the Oculus Go and Oculus Quest. Frontiers in Virtual Reality, 2021, 2, .	3.7	16
6	Effects of stereopsis on vection, presence and cybersickness in head-mounted display (HMD) virtual reality. Scientific Reports, 2021, 11, 12373.	3.3	9
7	Multisensory integration and the experience of scene instability, presence and cybersickness in virtual environments. Computers in Human Behavior, 2020, 113, 106484.	8.5	50
8	Virtual Reality Improves Clinical Assessment of the Optic Nerve. Frontiers in Virtual Reality, 2020, 1, .	3.7	6
9	Ultrafast Exciton Selfâ€Trapping and Delocalization in Cycloparaphenylenes: The Role of Excitedâ€State Symmetry in Electronâ€Vibrational Coupling. Angewandte Chemie - International Edition, 2020, 59, 16989-16996.	13.8	7
10	U-Net Segmented Adjacent Angle Detection (USAAD) for Automatic Analysis of Corneal Nerve Structures. Data, 2020, 5, 37.	2.3	13
11	Enhanced 3D Point Cloud from a Light Field Image. Remote Sensing, 2020, 12, 1125.	4.0	15
12	Effects of Shape, Roughness and Gloss on the Perceived Reflectance of Colored Surfaces. Frontiers in Psychology, 2020, 11, 485.	2.1	26
13	The Effect of Material Properties on the Perceived Shape of Three-Dimensional Objects. I-Perception, 2020, 11, 204166952098231.	1.4	3
14	Cybersickness in Head-Mounted Displays Is Caused by Differences in the User's Virtual and Physical Head Pose. Frontiers in Virtual Reality, 2020, 1, .	3.7	47
15	Postural stability predicts the likelihood of cybersickness in active HMD-based virtual reality. Displays, 2019, 58, 3-11.	3.7	90
16	The repeatability of subjective and objective tear ferning assessment and its association with lipid layer thickness, non-invasive tear break-up time and comfort. Contact Lens and Anterior Eye, 2019, 42, 420-427.	1.7	7
17	Method for estimating display lag in the Oculus Rift S and CV1. , 2019, , .		15
18	Monocular Viewing Protects Against Cybersickness Produced by Head Movements in the Oculus Rift. , 2019, , .		17

Јино Кім

#	Article	IF	CITATIONS
19	The field-size effect: Short motions look faster than long ones. Vision Research, 2018, 146-147, 32-40.	1.4	2
20	Automatic analysis of corneal nerves imaged using in vivo confocal microscopy. Australasian journal of optometry, The, 2018, 101, 147-161.	1.3	38
21	Effects of head-display lag on presence in the oculus rift. , 2018, , .		7
22	An object's material properties provide motion cues to three-dimensional shape. Journal of Vision, 2018, 18, 492.	0.3	0
23	Reconciling visual field defects and retinal nerve fibre layer asymmetric patterns in retrograde degeneration: an extended case series. Australasian journal of optometry, The, 2017, 100, 214-226.	1.3	13
24	Perception and misperception of surface opacity. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 13840-13845.	7.1	30
25	Corneal Nerve Morphology and Tear Film Substance P in Diabetes. Optometry and Vision Science, 2017, 94, 726-731.	1.2	33
26	Vection and cybersickness generated by head-and-display motion in the Oculus Rift. Displays, 2017, 46, 1-8.	3.7	137
27	Translucency and the perception of shape. Journal of Vision, 2017, 17, 17.	0.3	19
28	Short motions look faster than long ones. Journal of Vision, 2017, 17, 419.	0.3	0
29	Stereoscopic advantages for vection induced by radial, circular, and spiral optic flows. Journal of Vision, 2016, 16, 7.	0.3	22
30	The perception of three-dimensional contours and the effect of luminance polarity and color change on their detection. Journal of Vision, 2016, 16, 31.	0.3	3
31	Perceived depth from shading boundaries. Journal of Vision, 2016, 16, 5.	0.3	3
32	Turning the World Upside Down to Understand Perceived Transparency. I-Perception, 2016, 7, 204166951667156.	1.4	15
33	Relative Visual Oscillation Can Facilitate Visually Induced Self-Motion Perception. I-Perception, 2016, 7, 204166951666190.	1.4	9
34	Image Statistics and the Fine Lines of Material Perception. I-Perception, 2016, 7, 204166951665804.	1.4	15
35	Vection depends on perceived surface properties. Attention, Perception, and Psychophysics, 2016, 78, 1163-1173.	1.3	9
36	A New Angle on Object-Background Effects in Vection. I-Perception, 2016, 7, 204166951663169.	1.4	4

Јино Кім

#	Article	IF	CITATIONS
37	Age-related effects of increasing postural challenge on eye movement onset latencies to visual targets. Experimental Brain Research, 2016, 234, 1599-1609.	1.5	3
38	Contour constraints on the perception of surfaces and occlusions. Journal of Vision, 2016, 16, 312.	0.3	0
39	Coupled computations of 3D shape and translucency. Journal of Vision, 2016, 16, 947.	0.3	2
40	The Oculus Rift: a cost-effective tool for studying visual-vestibular interactions in self-motion perception. Frontiers in Psychology, 2015, 6, 248.	2.1	59
41	The perception of three-dimensional cast-shadow structure is dependent on visual awareness. Journal of Vision, 2014, 14, 25-25.	0.3	11
42	Texture-shading flow interactions and perceived reflectance. Journal of Vision, 2014, 14, 1-1.	0.3	26
43	A new spin on vection in depth. Journal of Vision, 2014, 14, 5-5.	0.3	23
44	Amodal completion is modulated by lightness similarity. Attention, Perception, and Psychophysics, 2014, 76, 98-111.	1.3	5
45	Tonic eye movements induced by bilateral and unilateral galvanic vestibular stimulation (GVS) in guinea pigs. Brain Research Bulletin, 2013, 90, 72-78.	3.0	7
46	Horizontal fixation point oscillation and simulated viewpoint oscillation both increase vection in depth. Journal of Vision, 2012, 12, 15-15.	0.3	26
47	Simulated Angular Head Oscillation Enhances Vection in Depth. Perception, 2012, 41, 402-414.	1.2	19
48	The Perception and Misperception of Specular Surface Reflectance. Current Biology, 2012, 22, 1909-1913.	3.9	170
49	The dark side of gloss. Nature Neuroscience, 2012, 15, 1590-1595.	14.8	76
50	Local versus global perception of ambiguous motion displays. Journal of Vision, 2011, 11, 13-13.	0.3	20
51	The role of brightness and orientation congruence in the perception of surface gloss. Journal of Vision, 2011, 11, 16-16.	0.3	81
52	The perception of gloss depends on highlight congruence with surface shading. Journal of Vision, 2011, 11, 4-4.	0.3	101
53	Display Lag and Gain Effects on Vection Experienced by Active Observers. Aviation, Space, and Environmental Medicine, 2011, 82, 763-769.	0.5	21
54	Vection in Depth during Consistent and Inconsistent Multisensory Stimulation. Perception, 2011, 40, 155-174.	1.2	44

Јино Кім

#	Article	IF	CITATIONS
55	Using color to understand perceived lightness. Journal of Vision, 2011, 11, 19-19.	0.3	5
56	Simulated Viewpoint Jitter Shakes Sensory Conflict Accounts of Vection. Seeing and Perceiving, 2011, 24, 173-200.	0.3	76
57	Visually mediated eye movements regulate the capture of optic flow in self-motion perception. Experimental Brain Research, 2010, 202, 355-361.	1.5	25
58	Eccentric gaze dynamics enhance vection in depth. Journal of Vision, 2010, 10, 7-7.	0.3	28
59	Image statistics and the perception of surface gloss and lightness. Journal of Vision, 2010, 10, 3-3.	0.3	77
60	Pilot gaze and glideslope control. ACM Transactions on Applied Perception, 2010, 7, 1-18.	1.9	13
61	Image statistics do not explain the perception of gloss and lightness. Journal of Vision, 2009, 9, 10-10.	0.3	166
62	Effects of gaze on vection from jittering, oscillating, and purely radial optic flow. Attention, Perception, and Psychophysics, 2009, 71, 1842-1853.	1.3	43
63	Short-term habituation of eye-movement responses induced by galvanic vestibular stimulation (GVS) in the alert guinea pig. Brain Research Bulletin, 2009, 79, 1-5.	3.0	8
64	Effects of active and passive viewpoint jitter on vection in depth. Brain Research Bulletin, 2008, 77, 335-342.	3.0	46
65	Oculog. , 2007, , .		9
66	Bone conducted vibration selectively activates irregular primary otolithic vestibular neurons in the guinea pig. Experimental Brain Research, 2006, 175, 256-267.	1.5	277
67	A simple pupil-independent method for recording eye movements in rodents using video. Journal of Neuroscience Methods, 2004, 138, 165-171.	2.5	22
68	Responses of primary vestibular neurons to galvanic vestibular stimulation (GVS) in the anaesthetised guinea pig. Brain Research Bulletin, 2004, 64, 265-271.	3.0	107