
SaÃ⁻d M Sebti

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/78036/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Global Phosphoproteomics Reveal CDK Suppression as a Vulnerability to KRas Addiction in Pancreatic Cancer. Clinical Cancer Research, 2021, 27, 4012-4024.	7.0	20
2	The GTPase KRAS suppresses the p53 tumor suppressor by activating the NRF2-regulated antioxidant defense system in cancer cells. Journal of Biological Chemistry, 2020, 295, 3055-3063.	3.4	17
3	Dual Farnesyl and Geranylgeranyl Transferase Inhibitor Thwarts Mutant KRAS-Driven Patient-Derived Pancreatic Tumors. Clinical Cancer Research, 2019, 25, 5984-5996.	7.0	46
4	GSK3 suppression upregulates \hat{l}^2 -catenin and c-Myc to abrogate KRas-dependent tumors. Nature Communications, 2018, 9, 5154.	12.8	84
5	Consensus report of the 8 and 9th Weinman Symposia on Gene x Environment Interaction in carcinogenesis: novel opportunities for precision medicine. Cell Death and Differentiation, 2018, 25, 1885-1904.	11.2	31
6	Combined HMG-COA reductase and prenylation inhibition in treatment of CCM. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 5503-5508.	7.1	24
7	PTEN counteracts FBXL2 to promote IP3R3- and Ca2+-mediated apoptosis limiting tumour growth. Nature, 2017, 546, 554-558.	27.8	182
8	Design, synthesis and evaluation of marinopyrrole derivatives as selective inhibitors of Mcl-1 binding to pro-apoptotic Bim and dual Mcl-1/Bcl-xL inhibitors. European Journal of Medicinal Chemistry, 2015, 90, 315-331.	5.5	23
9	Triciribine Phosphate Monohydrate, an AKT Inhibitor, Enhances Gemcitabine Activity in Pancreatic Cancer Cells. Anticancer Research, 2015, 35, 4599-604.	1.1	12
10	Marinopyrrole Derivatives with Sulfide Spacers as Selective Disruptors of Mcl-1 Binding to Pro-Apoptotic Protein Bim. Marine Drugs, 2014, 12, 4311-4325.	4.6	9
11	Ral GTPase Down-regulation Stabilizes and Reactivates p53 to Inhibit Malignant Transformation. Journal of Biological Chemistry, 2014, 289, 31296-31309.	3.4	25
12	Discovery of PI-1840, a Novel Noncovalent and Rapidly Reversible Proteasome Inhibitor with Anti-tumor Activity. Journal of Biological Chemistry, 2014, 289, 11906-11915.	3.4	20
13	Cyclic Marinopyrrole Derivatives as Disruptors of Mcl-1 and Bcl-xL Binding to Bim. Marine Drugs, 2014, 12, 1335-1348.	4.6	14
14	Oxadiazole-isopropylamides as Potent and Noncovalent Proteasome Inhibitors. Journal of Medicinal Chemistry, 2013, 56, 3783-3805.	6.4	31
15	Akt2 and acid ceramidase cooperate to induce cell invasion and resistance to apoptosis. Cell Cycle, 2013, 12, 2024-2032.	2.6	6
16	Depletion of K-Ras promotes proteasome degradation of survivin. Cell Cycle, 2013, 12, 522-532.	2.6	11
17	Discovery of Marinopyrrole A (Maritoclax) as a Selective Mcl-1 Antagonist that Overcomes ABT-737 Resistance by Binding to and Targeting Mcl-1 for Proteasomal Degradation. Journal of Biological Chemistry, 2012, 287, 10224-10235.	3.4	141
18	Discovery and Synthesis of Hydronaphthoquinones as Novel Proteasome Inhibitors. Journal of Medicinal Chemistry, 2012, 55, 1978-1998.	6.4	46

SaÃ⁻d M Sebti

#	Article	IF	CITATIONS
19	The BH3 α-Helical Mimic BH3-M6 Disrupts Bcl-XL, Bcl-2, and MCL-1 Protein-Protein Interactions with Bax, Bak, Bad, or Bim and Induces Apoptosis in a Bax- and Bim-dependent Manner. Journal of Biological Chemistry, 2011, 286, 9382-9392.	3.4	105
20	Combination of Farnesyltransferase and Akt Inhibitors Is Synergistic in Breast Cancer Cells and Causes Significant Breast Tumor Regression in ErbB2 Transgenic Mice. Clinical Cancer Research, 2011, 17, 2852-2862.	7.0	55
21	Synthesis and biological evaluation of naphthoquinone analogs as a novel class of proteasome inhibitors. Bioorganic and Medicinal Chemistry, 2010, 18, 5576-5592.	3.0	66
22	Discovery of a novel proteasome inhibitor selective for cancer cells over non-transformed cells. Cell Cycle, 2009, 8, 1940-1951.	2.6	53
23	Geranylgeranyltransferase I Inhibitors Target RalB To Inhibit Anchorage-Dependent Growth and Induce Apoptosis and RalA To Inhibit Anchorage-Independent Growth. Molecular and Cellular Biology, 2007, 27, 8003-8014.	2.3	77
24	Palmitoylated Cysteine 192 Is Required for RhoB Tumor-suppressive and Apoptotic Activities. Journal of Biological Chemistry, 2005, 280, 19243-19249.	3.4	40
25	Loss of p21WAF1/CIP1 accelerates Ras oncogenesis in a transgenic/knockout mammary cancer model. Oncogene, 2000, 19, 5338-5347.	5.9	85
26	Potent, Highly Selective, and Non-Thiol Inhibitors of Protein Geranylgeranyltransferase-I. Journal of Medicinal Chemistry, 1999, 42, 1333-1340.	6.4	79
27	Inhibition of the prenylation of K-Ras, but not H- or N-Ras, is highly resistant to CAAX peptidomimetics and requires both a farnesyltransferase and a geranylgeranyltransferase l inhibitor in human tumor cell lines. Oncogene, 1997, 15, 1283-1288.	5.9	223
28	Farnesyltransferase as a target for anticancer drug design. , 1997, 43, 25-41.		74