Yu Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7803466/publications.pdf

Version: 2024-02-01

147801 161849 9,640 56 31 citations h-index papers

54 g-index 68 68 68 17922 citing authors docs citations times ranked all docs

#	Article	IF	CITATIONS
1	Antibody neutralization to SARS-CoV-2 and variants after 1 year in Wuhan, China. Innovation(China), 2022, 3, 100181.	9.1	8
2	Drastic decline in sera neutralization against SARS-CoV-2 Omicron variant in Wuhan COVID-19 convalescents. Emerging Microbes and Infections, 2022, 11, 567-572.	6.5	39
3	N7-Methylation of the Coronavirus RNA Cap Is Required for Maximal Virulence by Preventing Innate Immune Recognition. MBio, 2022, 13, e0366221.	4.1	27
4	B-Cell-Epitope-Based Fluorescent Quantum Dot Biosensors for SARS-CoV-2 Enable Highly Sensitive COVID-19 Antibody Detection. Viruses, 2022, 14, 1031.	3.3	7
5	Emerging SARS-CoV-2 variants: Why, how, and what's next?. , 2022, 1, 100029.		26
6	Human adenoviruses: A suspect behind the outbreak of acute hepatitis in children amid the COVID-19 pandemic., 2022, 1, 100043.		3
7	Multi-route transmission potential of SARS-CoV-2 in healthcare facilities. Journal of Hazardous Materials, 2021, 402, 123771.	12.4	72
8	Cryo-EM Structure of an Extended SARS-CoV-2 Replication and Transcription Complex Reveals an Intermediate State in Cap Synthesis. Cell, 2021, 184, 184-193.e10.	28.9	201
9	Clinical characterization and risk factors associated with cytokine release syndrome induced by COVID-19 and chimeric antigen receptor T-cell therapy. Bone Marrow Transplantation, 2021, 56, 570-580.	2.4	25
10	An unconventional role of an ASB family protein in NF- $\hat{\mathbb{P}}$ B activation and inflammatory response during microbial infection and colitis. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, e2015416118.	7.1	14
11	Live attenuated coronavirus vaccines deficient in N7-Methyltransferase activity induce both humoral and cellular immune responses in mice. Emerging Microbes and Infections, 2021, 10, 1626-1637.	6.5	17
12	Distinct mechanisms for TMPRSS2 expression explain organ-specific inhibition of SARS-CoV-2 infection by enzalutamide. Nature Communications, 2021, 12, 866.	12.8	73
13	Coinfection with influenza A virus enhances SARS-CoV-2 infectivity. Cell Research, 2021, 31, 395-403.	12.0	164
14	ACE2 receptor usage reveals variation in susceptibility to SARS-CoV and SARS-CoV-2 infection among bat species. Nature Ecology and Evolution, 2021, 5, 600-608.	7.8	83
15	The Functional and Antiviral Activity of Interferon Alpha-Inducible IFI6 Against Hepatitis B Virus Replication and Gene Expression. Frontiers in Immunology, 2021, 12, 634937.	4.8	32
16	Reviving chloroquine for anti-SARS-CoV-2 treatment with cucurbit[7]uril-based supramolecular formulation. Chinese Chemical Letters, 2021, 32, 3019-3022.	9.0	17
17	The SARS-CoV-2 subgenome landscape and its novel regulatory features. Molecular Cell, 2021, 81, 2135-2147.e5.	9.7	72
18	Inhibition of Hepatitis B Virus by AAV8-Derived CRISPR/SaCas9 Expressed From Liver-Specific Promoters. Frontiers in Microbiology, 2021, 12, 665184.	3.5	20

#	Article	IF	CITATIONS
19	Assessment of the Diagnostic Ability of Four Detection Methods Using Three Sample Types of COVID-19 Patients. Frontiers in Cellular and Infection Microbiology, 2021, 11, 685640.	3.9	6
20	Clinical and immunological characteristics in COVID-19 convalescent patients. European Journal of Clinical Microbiology and Infectious Diseases, 2021, 40, 2669-2676.	2.9	1
21	Novel and potent inhibitors targeting DHODH are broad-spectrum antivirals against RNA viruses including newly-emerged coronavirus SARS-CoV-2. Protein and Cell, 2020, 11, 723-739.	11.0	129
22	Aerodynamic analysis of SARS-CoV-2 in two Wuhan hospitals. Nature, 2020, 582, 557-560.	27.8	1,517
23	Transcriptomic characteristics of bronchoalveolar lavage fluid and peripheral blood mononuclear cells in COVID-19 patients. Emerging Microbes and Infections, 2020, 9, 761-770.	6.5	994
24	Emerging coronaviruses: Genome structure, replication, and pathogenesis. Journal of Medical Virology, 2020, 92, 418-423.	5.0	2,439
25	RNA based mNGS approach identifies a novel human coronavirus from two individual pneumonia cases in 2019 Wuhan outbreak. Emerging Microbes and Infections, 2020, 9, 313-319.	6.5	471
26	ddPCR: a more accurate tool for SARS-CoV-2 detection in low viral load specimens. Emerging Microbes and Infections, 2020, 9, 1259-1268.	6.5	333
27	Analytical comparisons of SARS-COV-2 detection by qRT-PCR and ddPCR with multiple primer/probe sets. Emerging Microbes and Infections, 2020, 9, 1175-1179.	6.5	116
28	P200 family protein IFI204 negatively regulates type I interferon responses by targeting IRF7 in nucleus. PLoS Pathogens, 2019, 15, e1008079.	4.7	23
29	PTEN-L promotes type I interferon responses and antiviral immunity. Cellular and Molecular Immunology, 2018, 15, 48-57.	10.5	15
30	The Nâ€terminal ubiquitinâ€associated domain of Cezanne is crucial for its function to suppress NFâ€₽B pathway. Journal of Cellular Biochemistry, 2018, 119, 1979-1991.	2.6	14
31	The RNA Capping Enzyme Domain in Protein A is Essential for Flock House Virus Replication. Viruses, 2018, 10, 483.	3.3	9
32	Electron microscopy studies of the coronavirus ribonucleoprotein complex. Protein and Cell, 2017, 8, 219-224.	11.0	62
33	AMIGO2 modulates T cell functions and its deficiency in mice ameliorates experimental autoimmune encephalomyelitis. Brain, Behavior, and Immunity, 2017, 62, 110-123.	4.1	6
34	Immune regulator ABIN1 suppresses HIV-1 transcription by negatively regulating the ubiquitination of Tat. Retrovirology, 2017, 14, 12.	2.0	12
35	A Genome-Wide CRISPR Screen Identifies Genes Critical for Resistance to FLT3 Inhibitor AC220. Cancer Research, 2017, 77, 4402-4413.	0.9	66
36	The DEAD-Box RNA Helicase DDX3 Interacts with NF- \hat{l}^{Ω} B Subunit p65 and Suppresses p65-Mediated Transcription. PLoS ONE, 2016, 11, e0164471.	2.5	28

#	Article	IF	CITATIONS
37	Identification and Characterization of a Ribose 2′- <i>O</i> -Methyltransferase Encoded by the Ronivirus Branch of Nidovirales. Journal of Virology, 2016, 90, 6675-6685.	3.4	22
38	Ubiquitin ligase Fbw7 restricts the replication of hepatitis C virus by targeting NS5B for ubiquitination and degradation. Biochemical and Biophysical Research Communications, 2016, 470, 697-703.	2.1	13
39	Molecular mechanisms of coronavirus RNA capping and methylation. Virologica Sinica, 2016, 31, 3-11.	3.0	162
40	The tumor suppressor PTEN has a critical role in antiviral innate immunity. Nature Immunology, 2016, 17, 241-249.	14.5	138
41	Genome editing of CXCR4 by CRISPR/cas9 confers cells resistant to HIV-1 infection. Scientific Reports, 2015, 5, 15577.	3.3	172
42	Severe acute respiratory syndrome coronavirus protein 6 mediates ubiquitin-dependent proteosomal degradation of N-Myc (and STAT) interactor. Virologica Sinica, 2015, 30, 153-161.	3.0	22
43	Prediction and biochemical analysis of putative cleavage sites of the 3C-like protease of Middle East respiratory syndrome coronavirus. Virus Research, 2015, 208, 56-65.	2.2	39
44	Inhibition of Hepatitis B Virus Gene Expression and Replication by Hepatocyte Nuclear Factor 6. Journal of Virology, 2015, 89, 4345-4355.	3.4	30
45	The Nucleocapsid Protein of Coronaviruses Acts as a Viral Suppressor of RNA Silencing in Mammalian Cells. Journal of Virology, 2015, 89, 9029-9043.	3.4	148
46	Inhibition of hepatitis B virus by the CRISPR/Cas9 system via targeting the conserved regions of the viral genome. Journal of General Virology, 2015, 96, 2252-2261.	2.9	132
47	VHL negatively regulates SARS coronavirus replication by modulating nsp16 ubiquitination and stability. Biochemical and Biophysical Research Communications, 2015, 459, 270-276.	2.1	12
48	Coronavirus nsp10/nsp16 Methyltransferase Can Be Targeted by nsp10-Derived Peptide <i>In Vitro</i> and <i>In Vivo</i> To Reduce Replication and Pathogenesis. Journal of Virology, 2015, 89, 8416-8427.	3.4	138
49	Yeast-based assays for the high-throughput screening of inhibitors of coronavirus RNA cap guanine-N7-methyltransferase. Antiviral Research, 2014, 104, 156-164.	4.1	36
50	Biochemical Assays for MTase Activity. Bio-protocol, 2014, 4, .	0.4	0
51	Characterization of the guanine-N7 methyltransferase activity of coronavirus nsp14 on nucleotide GTP. Virus Research, 2013, 176, 45-52.	2.2	58
52	Structure-Function Analysis of Severe Acute Respiratory Syndrome Coronavirus RNA Cap Guanine-N7-Methyltransferase. Journal of Virology, 2013, 87, 6296-6305.	3.4	73
53	Short peptides derived from the interaction domain of SARS coronavirus nonstructural protein nsp10 can suppress the 2′-O-methyltransferase activity of nsp10/nsp16 complex. Virus Research, 2012, 167, 322-328.	2.2	66
54	Biochemical and Structural Insights into the Mechanisms of SARS Coronavirus RNA Ribose 2′-O-Methylation by nsp16/nsp10 Protein Complex. PLoS Pathogens, 2011, 7, e1002294.	4.7	287

Yu Chen

#	Article	IF	CITATIONS
55	Functional screen reveals SARS coronavirus nonstructural protein nsp14 as a novel cap N7 methyltransferase. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 3484-3489.	7.1	376
56	Identification of Novel Subgenomic RNAs and Noncanonical Transcription Initiation Signals of Severe Acute Respiratory Syndrome Coronavirus. Journal of Virology, 2005, 79, 5288-5295.	3.4	217