Susana Carvalho

List of Publications by Year in descending order

Source: https:/|exaly.com/author-pdf/7803346/publications.pdf
Version: 2024-02-01

1 Implementing and Innovating Marine Monitoring Approaches for Assessing Marine Environmental Status. Frontiers in Marine Science, 2016, 3, .
1.2
163
The use of the marine biotic index AMBI in the assessment of the ecological status of the Á"bidos lagoon (Portugal). Marine Pollution Bulletin, 2006, 52, 1414-1424.
2.3
88
2
\square
$3 \quad$ Multiple stressor effects on coral reef ecosystems. Global Change Biology, 2019, 25, 4131-4146.
4.2
83
4 A Catalogue of Marine Biodiversity Indicators. Frontiers in Marine Science, 2016, 3, .
1.2
74
Factors structuring temporal and spatial dynamics of macrobenthic communities in a eutrophic
coastal lagoon ($\tilde{A}^{\text {a b bidos }}$ lagoon, Portugal). Marine Environmental Research, 2011, 71, 97-110.
61
How functional traits of estuarine macrobenthic assemblages respond to metal contamination?.
$6 \quad \begin{aligned} & \text { How functional traits of estuarine macrob } \\ & \text { Ecological Indicators, 2016, 71, 645-659. }\end{aligned}$
2.6
59
Cross-shelf investigation of coral reef cryptic benthic organisms reveals diversity patterns of the
$7 \quad \begin{aligned} & \text { Cross-sheif investigation of coral reef cryptic benth } \\ & \text { hidden majority. Scientific Reports, 2018, } 8,8090 .\end{aligned}$
1.6
58
8 Please mind the gap $\hat{a} \notin$ " Visual census and cryptic biodiversity assessment at central Red Sea coral reefs.
Marine Environmental Research, 2016, 118, 20-30.
1.1
57
9 A comparative analysis of metabarcoding and morphologyâ $€$ based identification of benthic communities across different regional seas. Ecology and Evolution, 2018, 8, 8908-8920.

Spatial and inter-annual variability of the macrobenthic communities within a coastal lagoon (̃̃"bidos) Tj ETQq0 0

11	Microbial planktonic communities in the Red Sea: high levels of spatial and temporal variability shaped by nutrient availability and turbulence. Scientific Reports, 2017, 7, 6611.	1.6	54
12	Past and Future Grand Challenges in Marine Ecosystem Ecology. Frontiers in Marine Science, 2020, 7, .	1.2	52
13	The effect of depth and sediment type on the spatial distribution of shallow soft-bottom amphipods along the southern Portuguese coast. Helgoland Marine Research, 2012, 66, 489-501.	1.3	44
14	Cross shelf benthic biodiversity patterns in the Southern Red Sea. Scientific Reports, 2017, 7, 437.	1.6	44
15	Beyond the visual: using metabarcoding to characterize the hidden reef cryptobiome. Proceedings of the Royal Society B: Biological Sciences, 2019, 286, 20182697.	1.2	44
16	Coral reef degradation affects the potential for reef recovery after disturbance. Marine Environmental Research, 2018, 142, 48-58.	1.1	41
17	Benthic habitat mapping: Concerns using a combined approach (acoustic, sediment and biological) Tj ETQq1 10.784314 rgB_39/Overlc		
18	Distribution patterns of macrobenthic species in relation to organic enrichment within aquaculture earthen ponds. Marine Pollution Bulletin, 2006, 52, 1573-1584.	2.3	36

Baseline evaluation of sediment contamination in the shallow coastal areas of Saudi Arabian Red Sea.
Marine Pollution Bulletin, 2017, 123, 205-218.

Propensity to metal accumulation and oxidative stress responses of two benthic species
21 (Cerastoderma edule and Nephtys hombergii): are tolerance processes limiting their responsiveness?.

The role of seagrass vegetation and local environmental conditions in shaping benthic bacterial and macroinvertebrate communities in a tropical coastal lagoon. Scientific Reports, 2020, 10, 13550.
1.6

Biodiversity patterns of plankton assemblages at the extremes of the Red Sea. FEMS Microbiology
Ecology, 2016, 92, fiw002.
1.3

Disentangling the complex microbial community of coral reefs using standardized Autonomous Reef
Monitoring Structures (ARMS). Molecular Ecology, 2019, 28, 3496-3507.
2.0

31

Total alkalinity production in a mangrove ecosystem reveals an overlooked Blue Carbon component.
Limnology and Oceanography Letters, 2021, 6, 61-67.
1.6

31

```
27 Nitrogen eutrophication particularly promotes turf algae in coral reefs of the central Red Sea. PeerJ,
2020, 8, e8737.
```

Macrobenthic Colonisation of Artificial Reefs on the Southern Coast of Portugal (AncÃ£o, Algarve).
Hydrobiologia, 2006, 555, 335-343.
1.0

30

> Enrichment of aquaculture earthen ponds with Hediste diversicolor: Consequences for benthic
> dynamics and natural productivity. Aquaculture, 2007, 262, 227-236.

30 How complementary are epibenthic assemblages in artificial andÂnearby natural rocky reefs?. Marine
Environmental Research, 2013, 92, 170-177.
1.1

30

Clam dredging effects and subsequent recovery of benthic communities at different depth ranges.
31 Marine Environmental Research, 2009, 67, 89-99.
Marine Environmental Research, 2009, 67, 89-99.
1.1

29

An in situ approach for measuring biogeochemical fluxes in structurally complex benthic communities. Methods in Ecology and Evolution, 2019, 10, 712-725.
2.2

29
Temporal variability of biodiversity patterns and trophic structure of estuarine macrobenthic
assemblages along a gradient of metal contamination. Estuarine, Coastal and Shelf Science, 2015, 167,
$286-299$.

La pesquerÃa artesanal de gasterÃ³podos murÃcidos (\<i\>Hexaplex trunculus\</i\> y) Tj ETQq0 00 rgBT /Overlock 10 Tf 50147
Scientia Marina, 2008, 72, .

39	Effect of depth and reef structure on early macrobenthic communities of the Algarve artificial reefs (southern Portugal). Hydrobiologia, 2007, 580, 173-180.	1.0	23
40	Consistent variability in beta-diversity patterns contrasts with changes in alpha-diversity along an onshore to offshore environmental gradient: the case of Red Sea soft-bottom macrobenthos. Marine Biodiversity, 2019, 49, 247-262.	0.3	23
41	Is metal contamination responsible for increasing aneuploidy levels in the Manila clam Ruditapes philippinarum?. Science of the Total Environment, 2017, 577, 340-348.	3.9	20
42	Metal bioaccumulation and oxidative stress profiles in Ruditapes philippinarum â€" insights towards its suitability as bioindicator of estuarine metal contamination. Ecological Indicators, 2018, 95, 1087-1099.	2.6	20
43	Is surface orientation a determinant for colonisation patterns of vagile and sessile macrobenthos on artificial reefs?. Biofouling, 2008, 24, 381-391.	0.8	19

PanâEregional marine benthic cryptobiome biodiversity patterns revealed by metabarcoding Aut
Reef Monitoring Structures. Molecular Ecology, 2020, 29, 4882-4897.

$45 \quad$| Extracellular DNA amplicon sequencing reveals high levels of benthic eukaryotic diversity in the |
| :--- |
| central Red Sea. Marine Genomics, 2016, 26, 29-39. |

Biochemical biomarker responses to pollution in selected sentinel organisms across the Eastern
46 Mediterranean and the Black Sea. Environmental Science and Pollution Research, 2016, 23, 1789-1804.

| Morphological and ecological trait diversity reveal sensitivity of herbivorous fish assemblages to |
| :--- | :--- |
| coral reef benthic conditions. Marine Environmental Research, 2020, 162, 105102. |$\quad 1.1415$

High summer temperatures amplify functional differences between coralâ€•and algaeâ€dominated reef
communities. Ecology, 2021, 102, e03226.
A step towards the validation of bacteria biotic indices using DNA metabarcoding for benthic
monitoring. Molecular Ecology Resources, 2021, 21, 1889-1903.

Heterotrophic bacterioplankton responses in coral- and algae-dominated Red Sea reefs show they
might benefit from future regime shift. Science of the Total Environment, 2021, 751, 141628 .
3.9

14

Daily availability of nutrients and metals in a eutrophic meso-tidal coastal lagoon ($\tilde{A}^{\text {cbidos lagoon, }) ~ T j ~ E T Q q 1 ~} 10.78 .4314$ rgBT_Overlo

Environmental quality assessment combining sediment metal levels, biomarkers and macrobenthic
communities: application to the Ã"bidos coastal lagoon (Portugal). Environmental Monitoring and
1.3

Assessment, 2012, 184, 7141-7151.
Can we infer dredge fishing effort from macrobenthic community structure?. ICES Journal of Marine
Science, 2009, 66, 2121-2132.
Environmental impact of razor clam harvesting using salt in Ria Formosa lagoon (Southern Portugal) Freshwater Ecosystems, 2009, 19, 542-553.
Stylophora under stress: A review of research trends and impacts of stressors on a model coral
species. Science of the Total Environment, $2022,816,151639$.

62 Geochemical changes in white seabream (Diplodus sargus) earth ponds during a production cycle.
$0.9 \quad 7$
Aquaculture Research, 2007, 38, 1619-1626.

Relationship between Razor Clam Fishing Intensity and Potential Changes in Associated Benthic
Communities. Journal of Shellfish Research, 2011, 30, 309-323.

Nutrient pollution enhances productivity and framework dissolution in algae- but not in
coral-dominated reef communities. Marine Pollution Bulletin, 2021, 168, 112444.
$2.3 \quad 7$

> Simulated overfishing and natural eutrophication promote the relative success of a non-indigenous
ascidian in coral reefs at the Pacific coast of Costa Rica. Aquatic Invasions, 2017, 12, 435-446.
0.6

Metal accumulation and oxidative stress responses in Ulva spp. in the presence of nocturnal pulses of
66 metals from sediment: A field transplantation experiment under eutrophic conditions. Marine
1.1 Environmental Research, 2014, 94, 56-64.
The influence of white seabream (Diplodus sargus) production on macrobenthic colonization
patterns. Acta Oecologica, 2007, 31, 307-315.
$0.5 \quad 5$ patterns. Acta Oecologica, 2007, 31, 307-315.

Can macrobenthic communities be used in the assessment of environmental quality of fish earthen
$0.4 \quad 5$ ponds?. Journal of the Marine Biological Association of the United Kingdom, 2010, 90, 135-144.

$$
\begin{aligned}
& \text { Localized effects of offshore aquaculture on water quality in a tropical sea. Marine Pollution } \\
& \text { Bulletin, } 2021,171,112732 \text {. }
\end{aligned}
$$

$2.3 \quad 5$

Composition, uniqueness and connectivity across tropical coastal lagoon habitats in the Red Sea.
BMC Ecology, 2020, 20, 61.

