
Rachelle H Crosbie

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/780333/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Progressive Muscular Dystrophy in α-Sarcoglycan–deficient Mice. Journal of Cell Biology, 1998, 142, 1461-1471.	5.2	331
2	Assembly of the Dystrophin-Associated Protein Complex Does Not Require the Dystrophin Cooh-Terminal Domain. Journal of Cell Biology, 2000, 150, 1399-1410.	5.2	201
3	Sarcospan, the 25-kDa Transmembrane Component of the Dystrophin-Glycoprotein Complex. Journal of Biological Chemistry, 1997, 272, 31221-31224.	3.4	165
4	Biosynthesis of dystroglycan: processing of a precursor propeptide. FEBS Letters, 2000, 468, 79-83.	2.8	152
5	Membrane Targeting and Stabilization of Sarcospan Is Mediated by the Sarcoglycan Subcomplex. Journal of Cell Biology, 1999, 145, 153-165.	5.2	128
6	Type V Collagen in Scar Tissue Regulates the Size of Scar after Heart Injury. Cell, 2020, 182, 545-562.e23.	28.9	113
7	Loss of sarcolemma nNOS in sarcoglycanâ€deficient muscle. FASEB Journal, 2002, 16, 1786-1791.	0.5	80
8	Caveolin-3 is not an integral component of the dystrophin glycoprotein complex. FEBS Letters, 1998, 427, 279-282.	2.8	75
9	Hypertrophic response of Duchenne and limb-girdle muscular dystrophies is associated with activation of Akt pathway. Experimental Cell Research, 2006, 312, 2580-2591.	2.6	67
10	Mitochondrial Dysfunction Is an Early Consequence of Partial or Complete Dystrophin Loss in mdx Mice. Frontiers in Physiology, 2020, 11, 690.	2.8	61
11	Myogenic Akt signaling attenuates muscular degeneration, promotes myofiber regeneration and improves muscle function in dystrophin-deficient mdx mice. Human Molecular Genetics, 2011, 20, 1324-1338.	2.9	52
12	Characterization of aquaporinâ€4 in muscle and muscular dystrophy. FASEB Journal, 2002, 16, 943-949.	0.5	48
13	Sarcospan reduces dystrophic pathology: stabilization of the utrophin–glycoprotein complex. Journal of Cell Biology, 2008, 183, 419-427.	5.2	48
14	Spp1 (osteopontin) promotes TGFβ processing in fibroblasts of dystrophin-deficient muscles through matrix metalloproteinases. Human Molecular Genetics, 2019, 28, 3431-3442.	2.9	47
15	Myogenic Akt signaling upregulates the utrophin–glycoprotein complex and promotes sarcolemma stability in muscular dystrophy. Human Molecular Genetics, 2009, 18, 318-327.	2.9	42
16	NO vascular control in Duchenne muscular dystrophy. Nature Medicine, 2001, 7, 27-29.	30.7	38
17	Structural and functional analysis of the sarcoglycan–sarcospan subcomplex. Experimental Cell Research, 2007, 313, 639-651.	2.6	26
18	Disrupted mechanical stability of the dystrophin-glycoprotein complex causes severe muscular dystrophy in sarcospan transgenic mice. Journal of Cell Science, 2007, 120, 996-1008.	2.0	25

RACHELLE H CROSBIE

#	Article	IF	CITATIONS
19	Direct interaction of Gas11 with microtubules: Implications for the dynein regulatory complex. Cytoskeleton, 2007, 64, 461-473.	4.4	21
20	Expanding the Role of the Dynein Regulatory Complex to Non-Axonemal Functions: Association of GAS11 with the Golgi Apparatus. Traffic, 2006, 7, 538-548.	2.7	20
21	Stabilization of the cardiac sarcolemma by sarcospan rescues DMD-associated cardiomyopathy. JCI Insight, 2019, 4, .	5.0	18
22	Over-expression of Microspan, a novel component of the sarcoplasmic reticulum, causes severe muscle pathology with triad abnormalities. Journal of Muscle Research and Cell Motility, 2006, 27, 545-558.	2.0	13
23	Altered calcium pump and secondary deficiency of γ-sarcoglycan and microspan in sarcoplasmic reticulum membranes isolated from Ĩ-sarcoglycan knockout mice. Cell Calcium, 2010, 48, 28-36.	2.4	9
24	Large in-frame 5′ deletions in DMD associated with mild Duchenne muscular dystrophy: Two case reports and a review of the literature. Neuromuscular Disorders, 2019, 29, 863-873.	0.6	6
25	Development of a high-throughput screen to identify small molecule enhancers of sarcospan for the treatment of Duchenne muscular dystrophy. Skeletal Muscle, 2019, 9, 32.	4.2	6
26	Sarcospan increases laminin-binding capacity of α-dystroglycan to ameliorate DMD independent of <i>Galgt2</i> . Human Molecular Genetics, 2022, 31, 718-732.	2.9	6
27	Loss of sarcospan exacerbates pathology in <i>mdx</i> mice, but does not affect utrophin amelioration of disease. Human Molecular Genetics, 2021, 30, 149-159.	2.9	4
28	High-throughput screening identifies modulators of sarcospan that stabilize muscle cells and exhibit activity in the mouse model of Duchenne muscular dystrophy. Skeletal Muscle, 2020, 10, 26.	4.2	3