Nils Helge Schebb

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7803094/publications.pdf

Version: 2024-02-01

103 3,294 29 52
papers citations h-index g-index

103 103 103 4428 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	On the biosynthesis of specialized pro-resolving mediators in human neutrophils and the influence of cell integrity. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2022, 1867, 159093.	2.4	8
2	Oxylipin metabolism is controlled by mitochondrial \hat{l}^2 -oxidation during bacterial inflammation. Nature Communications, 2022, 13, 139.	12.8	27
3	Comprehensive Analysis of Fatty Acid and Oxylipin Patterns in n3-PUFA Supplements. Journal of Agricultural and Food Chemistry, 2022, 70, 3979-3988.	5.2	11
4	Inhibition of cytochrome P450 monooxygenase-catalyzed oxylipin formation by flavonoids: Evaluation of structure-activity relationship towards CYP4F2-selective inhibitors. European Journal of Medicinal Chemistry, 2022, 238, 114332.	5 . 5	6
5	Formation, Signaling and Occurrence of Specialized Pro-Resolving Lipid Mediators—What is the Evidence so far?. Frontiers in Pharmacology, 2022, 13, 838782.	3.5	70
6	Efferocytosis potentiates the expression of arachidonate 15-lipoxygenase (ALOX15) in alternatively activated human macrophages through LXR activation. Cell Death and Differentiation, 2021, 28, 1301-1316.	11.2	46
7	Combined Targeted Proteomics and Oxylipin Metabolomics for Monitoring of the COXâ€⊋ Pathway. Proteomics, 2021, 21, e1900058.	2.2	5
8	Omegaâ€3 fatty acids protect from colitis via an Alox15â€derived eicosanoid. FASEB Journal, 2021, 35, e21491.	0.5	12
9	Oxylipin patterns in human colon adenomas. Prostaglandins Leukotrienes and Essential Fatty Acids, 2021, 167, 102269.	2.2	1
10	Rapid quantification of fatty acids in plant oils and biological samples by LC-MS. Analytical and Bioanalytical Chemistry, 2021, 413, 5439-5451.	3.7	16
11	Fatty acid and oxylipin concentration differ markedly between different fetal bovine serums: A cautionary note. Lipids, 2021, 56, 613-616.	1.7	2
12	Metabolic fate and toxicity reduction of aflatoxin B1 after uptake by edible Tenebrio molitor larvae. Food and Chemical Toxicology, 2021, 155, 112375.	3.6	9
13	APOE Genotype Modifies the Plasma Oxylipin Response to Omega-3 Polyunsaturated Fatty Acid Supplementation in Healthy Individuals. Frontiers in Nutrition, 2021, 8, 723813.	3.7	11
14	A Walnut DietÂin Combination with Enriched Environment ImprovesÂCognitive Function and Affects Lipid Metabolites in Brain and Liver of Aged NMRI Mice. NeuroMolecular Medicine, 2021, 23, 140-160.	3.4	9
15	Knock-In Mice Expressing a 15-Lipoxygenating Alox5 Mutant Respond Differently to Experimental Inflammation Than Reported Alox5 $\hat{a}^{\alpha}/\hat{a}^{\alpha}$ Mice. Metabolites, 2021, 11, 698.	2.9	9
16	Dietary omega-3 PUFA improved tubular function after ischemia induced acute kidney injury in mice but did not attenuate impairment of renal function. Prostaglandins and Other Lipid Mediators, 2020, 146, 106386.	1.9	18
17	Targeting esterified oxylipins by LC–MS - Effect of sample preparation on oxylipin pattern. Prostaglandins and Other Lipid Mediators, 2020, 146, 106384.	1.9	31
18	Effect of dietary EPA and DHA on murine blood and liver fatty acid profile and liver oxylipin pattern depending on high and low dietary n6-PUFA. Food and Function, 2020, 11, 9177-9191.	4.6	7

#	Article	IF	CITATIONS
19	Non-targeted and targeted analysis of oxylipins in combination with charge-switch derivatization by ion mobility high-resolution mass spectrometry. Analytical and Bioanalytical Chemistry, 2020, 412, 5743-5757.	3.7	17
20	Dietary Polyphenols Inhibit the Cytochrome P450 Monooxygenase Branch of the Arachidonic Acid Cascade with Remarkable Structure-Dependent Selectivity and Potency. Journal of Agricultural and Food Chemistry, 2020, 68, 9235-9244.	5.2	13
21	Human lipoxygenase isoforms form complex patterns of double and triple oxygenated compounds from eicosapentaenoic acid. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2020, 1865, 158806.	2.4	8
22	Simple Targeted Assays for Metabolic Pathways and Signaling: A Powerful Tool for Targeted Proteomics. Analytical Chemistry, 2020, 92, 13672-13676.	6.5	1
23	Harmonized procedures lead to comparable quantification of total oxylipins across laboratories. Journal of Lipid Research, 2020, 61, 1424-1436.	4.2	24
24	Early antihypertensive treatment and ischemia-induced acute kidney injury. American Journal of Physiology - Renal Physiology, 2020, 319, F563-F570.	2.7	11
25	Clinical blood sampling for oxylipin analysis – effect of storage and pneumatic tube transport of blood on free and total oxylipin profile in human plasma and serum. Analyst, The, 2020, 145, 2378-2388.	3.5	18
26	Editorialâ€"Special issue of the 7th European workshop on lipid mediators. Prostaglandins and Other Lipid Mediators, 2020, 148, 106421.	1.9	0
27	Stability of oxylipins during plasma generation and long-term storage. Talanta, 2020, 217, 121074.	5.5	37
28	Effects of chronic lowâ€dose aspirin treatment on tumor prevention in three mouse models of intestinal tumorigenesis. Cancer Medicine, 2020, 9, 2535-2550.	2.8	28
29	Muscle Loss Associated Changes of Oxylipin Signatures During Biological Aging: An Exploratory Study From the PROOF Cohort. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2019, 74, 608-615.	3.6	10
30	Multiplex profiling of inflammation-related bioactive lipid mediators in Toxocara canis- and Toxocara cati-induced neurotoxocarosis. PLoS Neglected Tropical Diseases, 2019, 13, e0007706.	3.0	7
31	Single-Dose SDA-Rich Echium Oil Increases Plasma EPA, DPAn3, and DHA Concentrations. Nutrients, 2019, 11, 2346.	4.1	13
32	Polyunsaturated fatty acid metabolites: biosynthesis in Leishmania and role in parasite/host interaction. Journal of Lipid Research, 2019, 60, 636-647.	4.2	20
33	Impact of food polyphenols on oxylipin biosynthesis in human neutrophils. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2019, 1864, 1536-1544.	2.4	9
34	Isolation, total synthesis and quantification of caffeoylisocitric acid, a characteristic ingredient of the superfood amaranth. Tetrahedron, 2019, 75, 4479-4485.	1.9	2
35	Single-dose diclofenac in healthy volunteers can cause decrease in renal perfusion measured by functional magnetic resonance imagingâ€. Journal of Pharmacy and Pharmacology, 2019, 71, 1262-1270.	2.4	8
36	MS-based targeted metabolomics of eicosanoids and other oxylipins: Analytical and inter-individual variabilities. Free Radical Biology and Medicine, 2019, 144, 72-89.	2.9	56

3

#	Article	IF	Citations
37	Formation of trans-epoxy fatty acids correlates with formation of isoprostanes and could serve as biomarker of oxidative stress. Prostaglandins and Other Lipid Mediators, 2019, 144, 106334.	1.9	14
38	Plasma oxylipins respond in a linear dose-response manner with increased intake of EPA and DHA: results from a randomized controlled trial in healthy humans. American Journal of Clinical Nutrition, 2019, 109, 1251-1263.	4.7	59
39	Development of an Optimized LC-MS Method for the Detection of Specialized Pro-Resolving Mediators in Biological Samples. Frontiers in Pharmacology, 2019, 10, 169.	3.5	59
40	A strategy for validating concentrations of oxylipin standards for external calibration. Prostaglandins and Other Lipid Mediators, 2019, 141, 22-24.	1.9	10
41	Activation of Lipid Mediator Formation Due to Lipoprotein Apheresis. Nutrients, 2019, 11, 363.	4.1	7
42	Aspirin alone and combined with a statin suppresses eicosanoid formation in human colon tissue. Journal of Lipid Research, 2018, 59, 864-871.	4.2	19
43	Effects of a 12-week high- \hat{l} ±-linolenic acid intervention on EPA and DHA concentrations in red blood cells and plasma oxylipin pattern in subjects with a low EPA and DHA status. Food and Function, 2018, 9, 1587-1600.	4.6	44
44	Development of an LC-ESI(-)-MS/MS method for the simultaneous quantification of 35 isoprostanes and isofurans derived from the major n3- and n6-PUFAs. Analytica Chimica Acta, 2018, 1037, 63-74.	5.4	65
45	FP238ACUTE KIDNEY INJURY CAN BE ATTENUATED BY DIETRAY OMEGA-3 FOOD SUPPLEMENTATION. Nephrology Dialysis Transplantation, 2018, 33, i109-i109.	0.7	0
46	Dietary Omega-3 Food Supplementation to Attenuate Renal Ischemia Reperfusion Injury. Transplantation, 2018, 102, S714.	1.0	0
47	Intra-individual variance of the human plasma oxylipin pattern: low inter-day variability in fasting blood samples versus high variability during the day. Analytical Methods, 2018, 10, 4935-4944.	2.7	15
48	Effects of a low and a high dietary LA/ALA ratio on long-chain PUFA concentrations in red blood cells. Food and Function, 2018, 9, 4742-4754.	4.6	23
49	Effect of Omega-3 Fatty Acid Supplementation on Oxylipins in a Routine Clinical Setting. International Journal of Molecular Sciences, 2018, 19, 180.	4.1	21
50	Comparison of derivatization/ionization techniques for liquid chromatography tandem mass spectrometry analysis of oxylipins. Prostaglandins and Other Lipid Mediators, 2017, 130, 8-15.	1.9	19
51	Effect of DHA supplementation on oxylipin levels in plasma and immune cell stimulated blood. Prostaglandins Leukotrienes and Essential Fatty Acids, 2017, 121, 76-87.	2.2	27
52	A diet rich in omega-3 fatty acids enhances expression of soluble epoxide hydrolase in murine brain. Prostaglandins and Other Lipid Mediators, 2017, 133, 79-87.	1.9	17
53	Effects of omega-3 fatty acid supplementation on the pattern of oxylipins: a short review about the modulation of hydroxy-, dihydroxy-, and epoxy-fatty acids. Food and Function, 2017, 8, 2355-2367.	4.6	60
54	Mammalian ALOX15 orthologs exhibit pronounced dual positional specificity with docosahexaenoic acid. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2017, 1862, 666-675.	2.4	60

#	Article	IF	CITATIONS
55	Editorialâ€"Special issue of the 6th European Workshop on Lipid Mediators. Prostaglandins and Other Lipid Mediators, 2017, 133, 1-3.	1.9	O
56	Fatty acid composition of free-living and parasitic stages of the bovine lungworm Dictyocaulus viviparus. Molecular and Biochemical Parasitology, 2017, 216, 39-44.	1.1	10
57	Lipid Class Specific Quantitative Analysis of n-3 Polyunsaturated Fatty Acids in Food Supplements. Journal of Agricultural and Food Chemistry, 2017, 65, 139-147.	5.2	28
58	Growth-Inhibiting Activity of Resveratrol Imine Analogs on Tumor Cells In Vitro. PLoS ONE, 2017, 12, e0170502.	2.5	10
59	Modulation of the endogenous omega-3 fatty acid and oxylipin profile in vivo—A comparison of the fat-1 transgenic mouse with C57BL/6 wildtype mice on an omega-3 fatty acid enriched diet. PLoS ONE, 2017, 12, e0184470.	2.5	26
60	Effects of docosahexaenoic acid supplementation on PUFA levels in red blood cells and plasma. Prostaglandins Leukotrienes and Essential Fatty Acids, 2016, 115, 12-23.	2.2	29
61	Food Polyphenol Apigenin Inhibits the Cytochrome P450 Monoxygenase Branch of the Arachidonic Acid Cascade. Journal of Agricultural and Food Chemistry, 2016, 64, 8973-8976.	5.2	17
62	Characterization of changes in plasma and tissue oxylipin levels in LPS and CLP induced murine sepsis. Inflammation Research, 2016, 65, 133-142.	4.0	34
63	Influence of weight reduction on blood levels of C-reactive protein, tumor necrosis factor-α, interleukin-6, and oxylipins in obese subjects. Prostaglandins Leukotrienes and Essential Fatty Acids, 2016, 106, 39-49.	2.2	41
64	Impact of dextran sulphate sodium-induced colitis on the intestinal transport of the colon carcinogen PhIP. Archives of Toxicology, 2016, 90, 1093-1102.	4.2	6
65	Effect of acute and chronic DSS induced colitis on plasma eicosanoid and oxylipin levels in the rat. Prostaglandins and Other Lipid Mediators, 2015, 120, 155-160.	1.9	11
66	Comparison of sample preparation methods for the quantitative analysis of eicosanoids and other oxylipins in plasma by means of LC-MS/MS. Analytical and Bioanalytical Chemistry, 2015, 407, 1403-1414.	3.7	89
67	Targeted metabolomics of the arachidonic acid cascade: current state and challenges of LC–MS analysis of oxylipins. Analytical and Bioanalytical Chemistry, 2015, 407, 2675-2683.	3.7	89
68	Investigation of the absorption of resveratrol oligomers in the Caco-2 cellular model of intestinal absorption. Food Chemistry, 2015, 167, 245-250.	8.2	65
69	Determining cyclooxygenase-2 activity in three different test systems utilizing online-solid phase extraction-liquid chromatography-mass spectrometry for parallel quantification of prostaglandin E2, D2 and thromboxane B2. Journal of Chromatography A, 2015, 1391, 40-48.	3.7	19
70	Intestinal absorption and cell transforming potential of PhIP-M1, a bacterial metabolite of the heterocyclic aromatic amine 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP). Toxicology Letters, 2015, 234, 92-98.	0.8	13
71	Investigation of the effects of soluble fibers on the absorption of resveratrol and 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PHIP) in the Caco-2 cellular model of intestinal absorption. International Journal of Food Sciences and Nutrition, 2015, 66, 677-679.	2.8	1
72	Dietary Fatty Acids Directly Impact Central Nervous System Autoimmunity via the Small Intestine. Immunity, 2015, 43, 817-829.	14.3	637

#	Article	IF	CITATIONS
73	Oral treatment of rodents with soluble epoxide hydrolase inhibitor 1-(1-propanoylpiperidin-4-yl)-3-[4-(trifluoromethoxy)phenyl]urea (TPPU): Resulting drug levels and modulation of oxylipin pattern. Prostaglandins and Other Lipid Mediators, 2015, 121, 131-137.	1.9	43
74	Development of an online-SPE-LC-MS method for the investigation of the intestinal absorption of 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PHIP) and its bacterial metabolite PHIP-M1 in a Caco-2 Transwell system. Food Chemistry, 2015, 166, 537-543.	8.2	13
75	In vitro glucuronidation kinetics of deoxynivalenol by human and animal microsomes and recombinant human UGT enzymes. Archives of Toxicology, 2015, 89, 949-960.	4.2	52
76	Food Polyphenols Fail to Cause a Biologically Relevant Reduction of COX-2 Activity. PLoS ONE, 2015, 10, e0139147.	2.5	29
77	Increase of EPA-derived hydroxy, epoxy and dihydroxy fatty acid levels in human plasma after a single dose of long-chain omega-3 PUFA. Prostaglandins and Other Lipid Mediators, 2014, 109-111, 23-31.	1.9	40
78	Metabolic Activation of the Antibacterial Agent Triclocarban by Cytochrome P450 1A1 Yielding Glutathione Adducts. Drug Metabolism and Disposition, 2014, 42, 1098-1102.	3.3	12
79	Determining the fatty acid composition in plasma and tissues as fatty acid methyl esters using gas chromatography – a comparison of different derivatization and extraction procedures. Prostaglandins Leukotrienes and Essential Fatty Acids, 2014, 91, 235-241.	2.2	73
80	Metabolische Aktivierung von Triclocarban durch Cytochrom P450 1A1. BioSpektrum, 2014, 20, 587-587.	0.0	0
81	Modulation of blood oxylipin levels by long-chain omega-3 fatty acid supplementation in hyper- and normolipidemic men. Prostaglandins Leukotrienes and Essential Fatty Acids, 2014, 90, 27-37.	2.2	59
82	Comparison of the effects of long-chain omega-3 fatty acid supplementation on plasma levels of free and esterified oxylipins. Prostaglandins and Other Lipid Mediators, 2014, 113-115, 21-29.	1.9	68
83	Development of On-line Liquid Chromatography-Biochemical Detection for Soluble Epoxide Hydrolase Inhibitors in Mixtures. Chromatographia, 2013, 76, 13-21.	1.3	3
84	Comparison of free serum oxylipin concentrations in hyper- vs. normolipidemic men. Prostaglandins Leukotrienes and Essential Fatty Acids, 2013, 89, 19-29.	2.2	90
85	Investigation of the Hepatic Glucuronidation Pattern of the Fusarium Mycotoxin Deoxynivalenol in Various Species. Chemical Research in Toxicology, 2012, 25, 2715-2717.	3.3	73
86	Development of a Rapid LC-UV Method for the Investigation of Chemical and Metabolic Stability of Resveratrol Oligomers. Journal of Agricultural and Food Chemistry, 2012, 60, 7844-7850.	5.2	26
87	Role of soluble epoxide hydrolase phosphatase activity in the metabolism of lysophosphatidic acids. Biochemical and Biophysical Research Communications, 2012, 419, 796-800.	2.1	50
88	Metabolism of the antibacterial triclocarban by human epidermal keratinocytes to yield protein adducts. Journal of Biochemical and Molecular Toxicology, 2012, 26, 230-234.	3.0	11
89	Whole blood is the sample matrix of choice for monitoring systemic triclocarban levels. Chemosphere, 2012, 87, 825-827.	8.2	29
90	Development of an ultra fast online-solid phase extraction (SPE) liquid chromatography electrospray tandem mass spectrometry (LC-ESI-MS/MS) based approach for the determination of drugs in pharmacokinetic studies. Analytical Methods, 2011, 3, 420-428.	2.7	28

#	Article	IF	CITATIONS
91	Investigation of Human Exposure to Triclocarban after Showering and Preliminary Evaluation of Its Biological Effects. Environmental Science & Environm	10.0	96
92	Bioconcentration, metabolism and excretion of triclocarban in larval Qurt medaka (Oryzias latipes). Aquatic Toxicology, 2011, 105, 448-454.	4.0	43
93	Antibakterielle Seife. Nachrichten Aus Der Chemie, 2011, 59, 862-865.	0.0	0
94	Development of an online SPE–LC–MS-based assay using endogenous substrate for investigation of soluble epoxide hydrolase (sEH) inhibitors. Analytical and Bioanalytical Chemistry, 2011, 400, 1359-1366.	3.7	25
95	The red clover isoflavone irilone is largely resistant to degradation by the human gut microbiota. Molecular Nutrition and Food Research, 2010, 54, 929-938.	3.3	19
96	Development of a fast liquid chromatography/mass spectrometry screening method for angiotensinâ€converting enzyme (ACE) inhibitors in complex natural mixtures like snake venom. Rapid Communications in Mass Spectrometry, 2010, 24, 687-697.	1.5	20
97	Analysis of glutathione adducts of patulin by means of liquid chromatography (HPLC) with biochemical detection (BCD) and electrospray ionization tandem mass spectrometry (ESI-MS/MS). Analytical and Bioanalytical Chemistry, 2009, 394, 1361-1373.	3.7	42
98	Development of a liquid chromatography-based screening methodology for proteolytic enzyme activity. Journal of Chromatography A, 2009, 1216, 4407-4415.	3.7	19
99	Fast method for monitoring phospholipase A2 activity by liquid chromatography–electrospray ionization mass spectrometry. Journal of Chromatography A, 2009, 1216, 5249-5255.	3.7	11
100	Application of LC and GC hyphenated with mass spectrometry as tool for characterization of unknown derivatives of isoflavonoids. Analytical and Bioanalytical Chemistry, 2008, 391, 239-250.	3.7	36
101	Fast sample preparation and liquid chromatography–tandem mass spectrometry method for assaying cell lysate acetylcholine. Journal of Chromatography A, 2008, 1183, 100-107.	3.7	24
102	Development of a Countergradient Parking System for Gradient Liquid Chromatography with Online Biochemical Detection of Serine Protease Inhibitors. Analytical Chemistry, 2008, 80, 6764-6772.	6.5	26
103	Screening of acetylcholinesterase inhibitors in snake venom by electrospray mass spectrometry. Pure and Applied Chemistry, 2007, 79, 2339-2349.	1.9	10