Dejiang Ni

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7802774/publications.pdf

Version: 2024-02-01

		185998	197535
69	2,697	28	49
papers	citations	h-index	g-index
69	69	69	2199
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	Optimum synthesis of cactus-inspired SERS substrate with high roughness for paraquat detection. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2022, 268, 120703.	2.0	3
2	A rapid and efficient transient expression system for gene function and subcellular localization studies in the tea plant (Camellia sinensis) leaves. Scientia Horticulturae, 2022, 297, 110927.	1.7	17
3	Effects of different tea tree varieties on the color, aroma, and taste of Chinese Enshi green tea. Food Chemistry: X, 2022, 14, 100289.	1.8	17
4	Dynamic Changes in Volatile Compounds of Shaken Black Tea during Its Manufacture by GC ×GC–TOFMS and Multivariate Data Analysis. Foods, 2022, 11, 1228.	1.9	10
5	Dynamic changes of color, volatile, and nonâ€volatile components during mechanized processing of green tea. Journal of Food Processing and Preservation, 2022, 46, .	0.9	6
6	Pile-fermentation of dark tea: Conditions optimization and quality formation mechanism. LWT - Food Science and Technology, 2022, 166, 113753.	2.5	15
7	The relationship between fluoride accumulation in tea plant and changes in leaf cell wall structure and composition under different fluoride conditions. Environmental Pollution, 2021, 270, 116283.	3.7	14
8	Study on mechanism of low bioavailability of black tea theaflavins by using Caco-2 cell monolayer. Drug Delivery, 2021, 28, 1737-1747.	2.5	8
9	A mycovirus modulates the endophytic and pathogenic traits of a plant associated fungus. ISME Journal, 2021, 15, 1893-1906.	4.4	49
10	Relationship between Secondary Metabolism and miRNA for Important Flavor Compounds in Different Tissues of Tea Plant (<i>Camellia sinensis</i>) As Revealed by Genome-Wide miRNA Analysis. Journal of Agricultural and Food Chemistry, 2021, 69, 2001-2012.	2.4	21
11	Biochemical characterization of specific Alanine Decarboxylase (AlaDC) and its ancestral enzyme Serine Decarboxylase (SDC) in tea plants (Camellia sinensis). BMC Biotechnology, 2021, 21, 17.	1.7	6
12	Ectopic Overexpression of Histone H3K4 Methyltransferase CsSDG36 from Tea Plant Decreases Hyperosmotic Stress Tolerance in Arabidopsis thaliana. International Journal of Molecular Sciences, 2021, 22, 5064.	1.8	5
13	Changes of fungal community and non-volatile metabolites during pile-fermentation of dark green tea. Food Research International, 2021, 147, 110472.	2.9	36
14	Comparative studies on the physicochemical profile and potential hypoglycemic activity of different tea extracts: Effect on sucrase-isomaltase activity and glucose transport in Caco-2 cells. Food Research International, 2021, 148, 110604.	2.9	16
15	Controllable Self-Assembly of SERS Hotspots in Liquid Environment. Langmuir, 2021, 37, 939-948.	1.6	18
16	Rapid field trace detection of pesticide residue in food based on surface-enhanced Raman spectroscopy. Mikrochimica Acta, 2021, 188, 370.	2.5	29
17	Metabolomics Analysis Reveals Major Differential Metabolites and Metabolic Alterations in Tea Plant Leaves (Camellia sinensis L.) Under Different Fluorine Conditions. Journal of Plant Growth Regulation, 2021, 40, 798-810.	2.8	8
18	Different Withering Times Affect Sensory Qualities, Chemical Components, and Nutritional Characteristics of Black Tea. Foods, 2021, 10, 2627.	1.9	14

#	Article	IF	CITATIONS
19	Exploring the Effects of Magnesium Deficiency on the Quality Constituents of Hydroponic-Cultivated Tea (<i>Camellia sinensis</i> L.) Leaves. Journal of Agricultural and Food Chemistry, 2021, 69, 14278-14286.	2.4	10
20	Characterization of a Novel Mitovirus Infecting Melanconiella theae Isolated From Tea Plants. Frontiers in Microbiology, 2021, 12, 757556.	1.5	11
21	A facile seed growth method to prepare stable Ag@ZrO2 core-shell SERS substrate with high stability in extreme environments. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2020, 228, 117676.	2.0	10
22	Self-assembled "bridge―substance for organochlorine pesticides detection in solution based on Surface Enhanced Raman Scattering. Journal of Hazardous Materials, 2020, 382, 121023.	6.5	29
23	Vibrational (FT-IR, Raman) analysis of tea catechins based on both theoretical calculations and experiments. Biophysical Chemistry, 2020, 256, 106282.	1.5	30
24	Dehydroascorbic Acid Affects the Stability of Catechins by Forming Conjunctions. Molecules, 2020, 25, 4076.	1.7	8
25	Genome-Wide Identification of CsATGs in Tea Plant and the Involvement of CsATG8e in Nitrogen Utilization. International Journal of Molecular Sciences, 2020, 21, 7043.	1.8	9
26	Genome assembly of wild tea tree DASZ reveals pedigree and selection history of tea varieties. Nature Communications, 2020, 11 , 3719 .	5. 8	108
27	Identification of MTP gene family in tea plant (Camellia sinensis L.) and characterization of CsMTP8.2 in manganese toxicity. Ecotoxicology and Environmental Safety, 2020, 202, 110904.	2.9	30
28	Inhibition of the facilitative sugar transporters (GLUTs) by tea extracts and catechins. FASEB Journal, 2020, 34, 9995-10010.	0.2	30
29	Transcriptome-Wide Analysis of Nitrogen-Regulated Genes in Tea Plant (Camellia sinensis L. O. Kuntze) and Characterization of Amino Acid Transporter CsCAT9.1. Plants, 2020, 9, 1218.	1.6	10
30	Genome-wide characterization of tea plant (Camellia sinensis) Hsf transcription factor family and role of CsHsfA2 in heat tolerance. BMC Plant Biology, 2020, 20, 244.	1.6	26
31	Transcriptomic analysis reveals mechanism of light-sensitive albinism in tea plant Camellia sinensis â€~Huangjinju'. BMC Plant Biology, 2020, 20, 216.	1.6	24
32	Withering degree affects flavor and biological activity of black tea: A non-targeted metabolomics approach. LWT - Food Science and Technology, 2020, 130, 109535.	2.5	36
33	Identification and distribution of a single nucleotide polymorphism responsible for the catechin content in tea plants. Horticulture Research, 2020, 7, 24.	2.9	25
34	An RNA-Seq transcriptome analysis revealing novel insights into fluorine absorption and transportation in the tea plant. Botany, 2020, 98, 249-259.	0.5	4
35	(Z)-3-Hexen-1-ol accumulation enhances hyperosmotic stress tolerance in Camellia sinensis. Plant Molecular Biology, 2020, 103, 287-302.	2.0	11
36	Parallel Metabolomic and Transcriptomic Analysis Reveals Key Factors for Quality Improvement of Tea Plants. Journal of Agricultural and Food Chemistry, 2020, 68, 5483-5495.	2.4	9

#	Article	IF	CITATIONS
37	Nonvolatile metabolism in postharvest tea (Camellia sinensis L.) leaves: Effects of different withering treatments on nonvolatile metabolites, gene expression levels, and enzyme activity. Food Chemistry, 2020, 327, 126992.	4.2	42
38	Identification of Aroma Composition and Key Odorants Contributing to Aroma Characteristics of White Teas. Molecules, 2020, 25, 6050.	1.7	35
39	Novel insight into the role of withering process in characteristic flavor formation of teas using transcriptome analysis and metabolite profiling. Food Chemistry, 2019, 272, 313-322.	4.2	133
40	Detection of systemic pesticide residues in tea products at trace level based on SERS and verified by GCâ€"MS. Analytical and Bioanalytical Chemistry, 2019, 411, 7187-7196.	1.9	24
41	Chlorophyll Metabolism in Postharvest Tea (<i>Camellia sinensis</i> L.) Leaves: Variations in Color Values, Chlorophyll Derivatives, and Gene Expression Levels under Different Withering Treatments. Journal of Agricultural and Food Chemistry, 2019, 67, 10624-10636.	2.4	69
42	Influence of exogenous calcium on the physiological, biochemical, phytochemical and ionic homeostasis of tea plants (Camellia sinensis (L.) O. Kuntze) subjected to fluorine stress. Plant Growth Regulation, 2019, 87, 455-465.	1.8	6
43	Facile Reduction Method Synthesis of Defective MoO _{2â€"<i>x</i>} Nanospheres Used for SERS Detection with High Chemical Enhancement. Analytical Chemistry, 2019, 91, 8683-8690.	3.2	43
44	Isolation and Characterization of CsWRKY7, a Subgroup IId WRKY Transcription Factor from Camellia sinensis, Linked to Development in Arabidopsis. International Journal of Molecular Sciences, 2019, 20, 2815.	1.8	14
45	Comparison of the Effects of Green and Black Tea Extracts on Na ⁺ /K ⁺ â€ATPase Activity in Intestine of Type 1 and Type 2 Diabetic Mice. Molecular Nutrition and Food Research, 2019, 63, e1801039.	1.5	16
46	SERS based determination of vanillin and its methyl and ethyl derivatives using flower-like silver nanoparticles on a silicon wafer. Mikrochimica Acta, 2019, 186, 302.	2.5	9
47	Effect of Stereochemical Configuration on the Transport and Metabolism of Catechins from Green Tea across Caco-2 Monolayers. Molecules, 2019, 24, 1185.	1.7	12
48	Cloning and expression patterns of VQ-motif-containing proteins under abiotic stress in tea plant. Plant Growth Regulation, 2019, 87, 277-286.	1.8	7
49	Highly sensitivity and homogeneous SERS platforms based on 3D-GNF/AgNPs hybrid structures. Materials Research Express, 2019, 6, 055033.	0.8	6
50	Aroma formation and dynamic changes during white tea processing. Food Chemistry, 2019, 274, 915-924.	4.2	124
51	Variation patterns in the content of glycosides during green tea manufacturing by a modification-specific metabolomics approach: Enzymatic reaction promoting an increase in the glycosidically bound volatiles at the pan firing stage. Food Chemistry, 2019, 279, 80-87.	4.2	52
52	Metabolomic analysis reveals the composition differences in 13 Chinese tea cultivars of different manufacturing suitabilities. Journal of the Science of Food and Agriculture, 2018, 98, 1153-1161.	1.7	53
53	The effect of solvent environment toward optimization of SERS sensors for pesticides detection from chemical enhancement aspects. Sensors and Actuators B: Chemical, 2018, 256, 721-728.	4.0	51
54	Rapid qualitative and quantitative determination of food colorants by both Raman spectra and Surface-enhanced Raman Scattering (SERS). Food Chemistry, 2018, 241, 427-433.	4.2	120

#	Article	IF	CITATIONS
55	Differences in the Characteristics and Pathogenicity of Colletotrichum camelliae and C. fructicola Isolated From the Tea Plant [Camellia sinensis (L.) O. Kuntze]. Frontiers in Microbiology, 2018, 9, 3060.	1.5	44
56	Transcriptome and metabolome analysis reveal candidate genes and biochemicals involved in tea geometrid defense in Camellia sinensis. PLoS ONE, 2018, 13, e0201670.	1.1	38
57	Natural variation ofCsSTOP1in tea plant (Camellia sinensis) related to aluminum tolerance. Plant and Soil, 2018, 431, 71-87.	1.8	11
58	Impact of light irradiation on black tea quality during withering. Journal of Food Science and Technology, 2017, 54, 1212-1227.	1.4	34
59	The Tea Tree Genome Provides Insights into Tea Flavor and Independent Evolution of Caffeine Biosynthesis. Molecular Plant, 2017, 10, 866-877.	3.9	563
60	Effect of steeping temperature on antioxidant and inhibitory activities of green tea extracts against α-amylase, α-glucosidase and intestinal glucose uptake. Food Chemistry, 2017, 234, 168-173.	4.2	65
61	Characterization of Causal Agents of a Novel Disease Inducing Brown-Black Spots on Tender Tea Leaves in China. Plant Disease, 2017, 101, 1802-1811.	0.7	16
62	Design of a silver nanoparticle for sensitive surface enhanced Raman spectroscopy detection of carmine dye. Food Chemistry, 2017, 237, 974-980.	4.2	61
63	An RNA-Seq transcriptome analysis revealing novel insights into aluminum tolerance and accumulation in tea plant. Planta, 2017, 246, 91-103.	1.6	47
64	Transcriptional profiling of catechins biosynthesis genes during tea plant leaf development. Planta, 2017, 246, 1139-1152.	1.6	65
65	Preparation of SERS-active substrates based on graphene oxide/silver nanocomposites for rapid zdetection of l-Theanine. Food Chemistry, 2017, 217, 511-516.	4.2	56
66	Rapid Determination of the Monosaccharide Composition and Contents in Tea Polysaccharides from Yingshuang Green Tea by Pre-Column Derivatization HPLC. Journal of Chemistry, 2016, 2016, 1-5.	0.9	28
67	Transcriptome analysis reveals self-incompatibility in the tea plant (Camellia sinensis) might be under gametophytic control. BMC Genomics, 2016, 17, 359.	1.2	50
68	In vitro antioxidant and pancreatic \hat{l} ±-amylase inhibitory activity of isolated fractions from water extract of Qingzhuan tea. Journal of Food Science and Technology, 2015, 52, 928-935.	1.4	45
69	Effects of aluminium on ultrastructure and antioxidant activity in leaves of tea plant. Acta Physiologiae Plantarum, 2011, 33, 973-978.	1.0	46