Lorenzo Moroni

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7802577/publications.pdf Version: 2024-02-01

		24978	31759
293	13,517	57	101
papers	citations	h-index	g-index
316	316	316	15449
all docs	docs citations	times ranked	citing authors

LOPENZO MODONI

#	Article	IF	CITATIONS
1	Cationic polymers and their therapeutic potential. Chemical Society Reviews, 2012, 41, 7147.	18.7	588
2	Biofabrication: reappraising the definition of an evolving field. Biofabrication, 2016, 8, 013001.	3.7	523
3	Biofabrication strategies for 3D in vitro models and regenerative medicine. Nature Reviews Materials, 2018, 3, 21-37.	23.3	502
4	Biofabrication: A Guide to Technology and Terminology. Trends in Biotechnology, 2018, 36, 384-402.	4.9	465
5	3D fiber-deposited scaffolds for tissue engineering: Influence of pores geometry and architecture on dynamic mechanical properties. Biomaterials, 2006, 27, 974-985.	5.7	452
6	Electrospinning for drug delivery applications: A review. Journal of Controlled Release, 2021, 334, 463-484.	4.8	345
7	The bioprinting roadmap. Biofabrication, 2020, 12, 022002.	3.7	291
8	Fiber diameter and texture of electrospun PEOT/PBT scaffolds influence human mesenchymal stem cell proliferation and morphology, and the release of incorporated compounds. Biomaterials, 2006, 27, 4911-4922.	5.7	225
9	Differential Response of Adult and Embryonic Mesenchymal Progenitor Cells to Mechanical Compression in Hydrogels. Stem Cells, 2007, 25, 2730-2738.	1.4	208
10	Chitosan/Poly(É>-caprolactone) blend scaffolds for cartilage repair. Biomaterials, 2011, 32, 1068-1079.	5.7	204
11	Integrating novel technologies to fabricate smart scaffolds. Journal of Biomaterials Science, Polymer Edition, 2008, 19, 543-572.	1.9	185
12	Bioprinting: From Tissue and Organ Development to <i>in Vitro</i> Models. Chemical Reviews, 2020, 120, 10547-10607.	23.0	185
13	Evaluation of Photocrosslinked Lutrol Hydrogel for Tissue Printing Applications. Biomacromolecules, 2009, 10, 1689-1696.	2.6	182
14	3D Fiberâ€Ðeposited Electrospun Integrated Scaffolds Enhance Cartilage Tissue Formation. Advanced Functional Materials, 2008, 18, 53-60.	7.8	180
15	Endothelial Differentiation of Mesenchymal Stromal Cells. PLoS ONE, 2012, 7, e46842.	1.1	171
16	Chitosan Scaffolds Containing Hyaluronic Acid for Cartilage Tissue Engineering. Tissue Engineering - Part C: Methods, 2011, 17, 717-730.	1.1	149
17	Gradients in pore size enhance the osteogenic differentiation of human mesenchymal stromal cells in three-dimensional scaffolds. Scientific Reports, 2016, 6, 22898.	1.6	147
18	Thiol–Ene Alginate Hydrogels as Versatile Bioinks for Bioprinting. Biomacromolecules, 2018, 19, 3390-3400.	2.6	146

#	Article	IF	CITATIONS
19	Hydrogels that listen to cells: a review of cell-responsive strategies in biomaterial design for tissue regeneration. Materials Horizons, 2017, 4, 1020-1040.	6.4	144
20	Dynamic Bioinks to Advance Bioprinting. Advanced Healthcare Materials, 2020, 9, e1901798.	3.9	141
21	Fabrication of three-dimensional bioplotted hydrogel scaffolds for islets of Langerhans transplantation. Biofabrication, 2015, 7, 025009.	3.7	136
22	Towards 4D printed scaffolds for tissue engineering: exploiting 3D shape memory polymers to deliver time-controlled stimulus on cultured cells. Biofabrication, 2017, 9, 031001.	3.7	121
23	Biomimetics of the extracellular matrix: an integrated three-dimensional fiber-hydrogel composite for cartilage tissue engineering. Smart Structures and Systems, 2011, 7, 213-222.	1.9	119
24	The role of calcium phosphate surface structure in osteogenesis and the mechanisms involved. Acta Biomaterialia, 2020, 106, 22-33.	4.1	117
25	Fabrication, Characterization and Cellular Compatibility of Poly(Hydroxy Alkanoate) Composite Nanofibrous Scaffolds for Nerve Tissue Engineering. PLoS ONE, 2013, 8, e57157.	1.1	113
26	The osteochondral interface as a gradient tissue: From development to the fabrication of gradient scaffolds for regenerative medicine. Birth Defects Research Part C: Embryo Today Reviews, 2015, 105, 34-52.	3.6	110
27	Modulating Alginate Hydrogels for Improved Biological Performance as Cellular 3D Microenvironments. Frontiers in Bioengineering and Biotechnology, 2020, 8, 665.	2.0	109
28	Bioprinting Vasculature: Materials, Cells and Emergent Techniques. Materials, 2019, 12, 2701.	1.3	103
29	Layer-by-Layer Tissue Microfabrication Supports Cell Proliferation <i>In Vitro</i> and <i>In Vivo</i> . Tissue Engineering - Part C: Methods, 2012, 18, 62-70.	1.1	98
30	Direct Writing Electrospinning of Scaffolds with Multidimensional Fiber Architecture for Hierarchical Tissue Engineering. ACS Applied Materials & Interfaces, 2017, 9, 38187-38200.	4.0	97
31	Tuning the conformation and mechanical properties of silk fibroin hydrogels. European Polymer Journal, 2020, 134, 109842.	2.6	95
32	Biomimetic Architectures for Peripheral Nerve Repair: A Review of Biofabrication Strategies. Advanced Healthcare Materials, 2018, 7, e1701164.	3.9	94
33	Tailoring surface nanoroughness of electrospun scaffolds for skeletal tissue engineering. Acta Biomaterialia, 2017, 59, 82-93.	4.1	93
34	Myoblast differentiation of human mesenchymal stem cells on graphene oxide and electrospun graphene oxide–polymer composite fibrous meshes: importance of graphene oxide conductivity and dielectric constant on their biocompatibility. Biofabrication, 2015, 7, 015009.	3.7	90
35	Influencing chondrogenic differentiation of human mesenchymal stromal cells in scaffolds displaying a structural gradient in pore size. Acta Biomaterialia, 2016, 36, 210-219.	4.1	88
36	Three-dimensional fiber-deposited PEOT/PBT copolymer scaffolds for tissue engineering: Influence of porosity, molecular network mesh size, and swelling in aqueous media on dynamic mechanical properties. Journal of Biomedical Materials Research - Part A, 2005, 75A, 957-965.	2.1	87

#	Article	IF	CITATIONS
37	Conductive hydrogel based on chitosan-aniline pentamer/gelatin/agarose significantly promoted motor neuron-like cells differentiation of human olfactory ecto-mesenchymal stem cells. Materials Science and Engineering C, 2019, 101, 243-253.	3.8	85
38	Biomaterials engineered for integration. Materials Today, 2008, 11, 44-51.	8.3	79
39	Engineered Microâ€Objects as Scaffolding Elements in Cellular Building Blocks for Bottomâ€Up Tissue Engineering Approaches. Advanced Materials, 2014, 26, 2592-2599.	11.1	78
40	Polymer hollow fiber three-dimensional matrices with controllable cavity and shell thickness. Biomaterials, 2006, 27, 5918-5926.	5.7	77
41	Surface modification of electrospun fibre meshes by oxygen plasma for bone regeneration. Biofabrication, 2013, 5, 015006.	3.7	74
42	Polymer brush coatings regulating cell behavior: Passive interfaces turn into active. Acta Biomaterialia, 2014, 10, 2367-2378.	4.1	74
43	Towards an in vitro model mimicking the foreign body response: tailoring the surface properties of biomaterials to modulate extracellular matrix. Scientific Reports, 2014, 4, 6325.	1.6	74
44	Biofunctionalized pectin hydrogels as 3D cellular microenvironments. Journal of Materials Chemistry B, 2015, 3, 2096-2108.	2.9	74
45	Leveling Up Hydrogels: Hybrid Systems in Tissue Engineering. Trends in Biotechnology, 2020, 38, 292-315.	4.9	74
46	Development and evaluation of inÂvivo tissue engineered blood vessels in a porcine model. Biomaterials, 2016, 75, 82-90.	5.7	70
47	Human mesenchymal stem cells: A bank perspective on the isolation, characterization and potential of alternative sources for the regeneration of musculoskeletal tissues. Journal of Cellular Physiology, 2013, 228, 680-687.	2.0	69
48	Viscoelastic Oxidized Alginates with Reversible Imine Type Crosslinks: Self-Healing, Injectable, and Bioprintable Hydrogels. Gels, 2018, 4, 85.	2.1	68
49	Triphasic scaffolds for the regeneration of the bone–ligament interface. Biofabrication, 2016, 8, 015009.	3.7	67
50	Ciprofloxacin-loaded polymeric nanoparticles incorporated electrospun fibers for drug delivery in tissue engineering applications. Drug Delivery and Translational Research, 2020, 10, 706-720.	3.0	67
51	Bio-Fabrication: Convergence of 3D Bioprinting and Nano-Biomaterials in Tissue Engineering and Regenerative Medicine. Frontiers in Bioengineering and Biotechnology, 2020, 8, 326.	2.0	67
52	Poly(N-isopropylacrylamide)–poly(ferrocenylsilane) dual-responsive hydrogels: synthesis, characterization and antimicrobial applications. Polymer Chemistry, 2013, 4, 337-342.	1.9	65
53	Amphiphilic beads as depots for sustained drug release integrated into fibrillar scaffolds. Journal of Controlled Release, 2014, 187, 66-73.	4.8	63
54	Multiscale fabrication of biomimetic scaffolds for tympanic membrane tissue engineering. Biofabrication, 2015, 7, 025005.	3.7	63

#	Article	IF	CITATIONS
55	Toward mimicking the bone structure: design of novel hierarchical scaffolds with a tailored radial porosity gradient. Biofabrication, 2016, 8, 045007.	3.7	63
56	Extracellular matrix and tissue engineering applications. Journal of Materials Chemistry, 2009, 19, 5474.	6.7	62
57	Tuning Cell Differentiation into a 3D Scaffold Presenting a Pore Shape Gradient for Osteochondral Regeneration. Advanced Healthcare Materials, 2016, 5, 1753-1763.	3.9	62
58	Flexible Yttrium-Stabilized Zirconia Nanofibers Offer Bioactive Cues for Osteogenic Differentiation of Human Mesenchymal Stromal Cells. ACS Nano, 2016, 10, 5789-5799.	7.3	62
59	Hybrid Polycaprolactone/Alginate Scaffolds Functionalized with VEGF to Promote de Novo Vessel Formation for the Transplantation of Islets of Langerhans. Advanced Healthcare Materials, 2016, 5, 1606-1616.	3.9	60
60	Influence of the nanofiber chemistry and orientation of biodegradable poly(butylene succinate)-based scaffolds on osteoblast differentiation for bone tissue regeneration. Nanoscale, 2018, 10, 8689-8703.	2.8	60
61	Tissue Engineering and Regenerative Medicine 2019: The Role of Biofabrication—A Year in Review. Tissue Engineering - Part C: Methods, 2020, 26, 91-106.	1.1	60
62	Peptide functionalized polyhydroxyalkanoate nanofibrous scaffolds enhance Schwann cells activity. Nanomedicine: Nanotechnology, Biology, and Medicine, 2014, 10, 1559-1569.	1.7	59
63	Critical factors in the design of growth factor releasing scaffolds for cartilage tissue engineering. Expert Opinion on Drug Delivery, 2008, 5, 543-566.	2.4	58
64	Hybrid and Composite Scaffolds Based on Extracellular Matrices for Cartilage Tissue Engineering. Tissue Engineering - Part B: Reviews, 2019, 25, 202-224.	2.5	58
65	Microwell Scaffolds for the Extrahepatic Transplantation of Islets of Langerhans. PLoS ONE, 2013, 8, e64772.	1.1	56
66	Steering cell behavior through mechanobiology in 3D: A regenerative medicine perspective. Biomaterials, 2021, 268, 120572.	5.7	55
67	Critical Steps toward a Tissue-Engineered Cartilage Implant Using Embryonic Stem Cells. Tissue Engineering - Part A, 2008, 14, 135-147.	1.6	54
68	Influence of the solvent type on the morphology and mechanical properties of electrospun PLLA yarns. Biofabrication, 2013, 5, 035014.	3.7	54
69	A biocomposite of collagen nanofibers and nanohydroxyapatite for bone regeneration. Biofabrication, 2014, 6, 035015.	3.7	53
70	Fabrication of Bioactive Composite Scaffolds by Electrospinning for Bone Regeneration. Macromolecular Bioscience, 2010, 10, 1365-1373.	2.1	52
71	Cell spheroids as a versatile research platform: formation mechanisms, high throughput production, characterization and applications. Biofabrication, 2021, 13, 032002.	3.7	52
72	Design of Biphasic Polymeric 3-Dimensional Fiber Deposited Scaffolds for Cartilage Tissue Engineering Applications. Tissue Engineering, 2007, 13, 361-371.	4.9	50

#	Article	IF	CITATIONS
73	Integration of hollow fiber membranes improves nutrient supply in three-dimensional tissue constructs. Acta Biomaterialia, 2011, 7, 3312-3324.	4.1	48
74	Surface energy and stiffness discrete gradients in additive manufactured scaffolds for osteochondral regeneration. Biofabrication, 2016, 8, 015014.	3.7	48
75	Improving cell distribution on 3D additive manufactured scaffolds through engineered seeding media density and viscosity. Acta Biomaterialia, 2020, 101, 183-195.	4.1	48
76	Fabrication of hybrid scaffolds obtained from combinations of <scp>PCL</scp> with gelatin or collagen via electrospinning for skeletal muscle tissue engineering. Journal of Biomedical Materials Research - Part A, 2021, 109, 1600-1612.	2.1	48
77	Utilizing the Foreign Body Response to Grow Tissue Engineered Blood Vessels in Vivo. Journal of Cardiovascular Translational Research, 2017, 10, 167-179.	1.1	47
78	Dynamic mechanical properties of 3D fiber-deposited PEOT/PBT scaffolds: An experimental and numerical analysis. Journal of Biomedical Materials Research - Part A, 2006, 78A, 605-614.	2.1	46
79	Comparison of alternative mesenchymal stem cell sources for cell banking and musculoskeletal advanced therapies. Journal of Cellular Biochemistry, 2011, 112, 1418-1430.	1.2	46
80	The influence of process parameters on the properties of electrospun <scp>PLLA</scp> yarns studied by the response surface methodology. Journal of Applied Polymer Science, 2015, 132, .	1.3	46
81	Influence of internal pore architecture on biological and mechanical properties of threeâ€dimensional fiber deposited scaffolds for bone regeneration. Journal of Biomedical Materials Research - Part A, 2016, 104, 991-1001.	2.1	46
82	Covalent Binding of Bone Morphogenetic Proteinâ€2 and Transforming Growth Factorâ€Î23 to 3D Plotted Scaffolds for Osteochondral Tissue Regeneration. Biotechnology Journal, 2017, 12, 1700072.	1.8	46
83	Topography of calcium phosphate ceramics regulates primary cilia length and TGF receptor recruitment associated with osteogenesis. Acta Biomaterialia, 2017, 57, 487-497.	4.1	45
84	PEOT/PBT Guides Enhance Nerve Regeneration in Long Gap Defects. Advanced Healthcare Materials, 2017, 6, 1600298.	3.9	45
85	Influence of Additive Manufactured Scaffold Architecture on the Distribution of Surface Strains and Fluid Flow Shear Stresses and Expected Osteochondral Cell Differentiation. Frontiers in Bioengineering and Biotechnology, 2017, 5, 6.	2.0	45
86	Acrylic Acid Plasma Coated 3D Scaffolds for Cartilage tissue engineering applications. Scientific Reports, 2018, 8, 3830.	1.6	44
87	Easily synthesized novel biodegradable copolyesters with adjustable properties for biomedical applications. Soft Matter, 2012, 8, 5466.	1.2	43
88	Label-free Raman monitoring of extracellular matrix formation in three-dimensional polymeric scaffolds. Journal of the Royal Society Interface, 2013, 10, 20130464.	1.5	43
89	Janus 3D printed dynamic scaffolds for nanovibration-driven bone regeneration. Nature Communications, 2021, 12, 1031.	5.8	43
90	A Fast Process for Imprinting Micro and Nano Patterns on Electrospun Fiber Meshes at Physiological Temperatures. Small, 2013, 9, 3405-3409.	5.2	42

#	Article	IF	CITATIONS
91	Interfacing polymeric scaffolds with primary pancreatic ductal adenocarcinoma cells to develop 3D cancer models. Biomatter, 2014, 4, e955386.	2.6	42
92	Influence of Solution Properties and Process Parameters on the Formation and Morphology of YSZ and NiO Ceramic Nanofibers by Electrospinning. Nanomaterials, 2017, 7, 16.	1.9	41
93	Nanoroughness, Surface Chemistry, and Drug Delivery Control by Atmospheric Plasma Jet on Implantable Devices. ACS Applied Materials & Interfaces, 2018, 10, 39512-39523.	4.0	41
94	Biofabrication of Hepatic Constructs by 3D Bioprinting of a Cellâ€Laden Thermogel: An Effective Tool to Assess Drugâ€Induced Hepatotoxic Response. Advanced Healthcare Materials, 2020, 9, e2001163.	3.9	41
95	Glycosaminoglycan-Inspired Biomaterials for the Development of Bioactive Hydrogel Networks. Molecules, 2020, 25, 978.	1.7	41
96	Combining technologies to create bioactive hybrid scaffolds for bone tissue engineering. Biomatter, 2013, 3, e23705.	2.6	40
97	Stemâ€Cell Clinging by a Thread: AFM Measure of Polymerâ€Brush Lateral Deformation. Advanced Materials Interfaces, 2016, 3, 1500456.	1.9	40
98	3D additive manufactured composite scaffolds with antibiotic-loaded lamellar fillers for bone infection prevention and tissue regeneration. Bioactive Materials, 2021, 6, 1073-1082.	8.6	40
99	Combinatorial Approaches to Controlling Cell Behaviour and Tissue Formation in 3D via Rapid-Prototyping and Smart Scaffold Design. Combinatorial Chemistry and High Throughput Screening, 2009, 12, 562-579.	0.6	39
100	The effect of scaffold-cell entrapment capacity and physico-chemical properties on cartilage regeneration. Biomaterials, 2013, 34, 4259-4265.	5.7	39
101	Creeping Proteins in Microporous Structures: Polymer Brushâ€Assisted Fabrication of 3D Gradients for Tissue Engineering. Advanced Healthcare Materials, 2015, 4, 1169-1174.	3.9	39
102	Primary chondrocytes enhance cartilage tissue formation upon co-culture with a range of cell types. Soft Matter, 2010, 6, 5080.	1.2	38
103	Cancer tissue engineering�new perspectives in understanding the biology of solid tumours�a critical review. OA Tissue Engineering, 2013, 1, .	0.4	38
104	Micropatterned hotâ€embossed polymeric surfaces influence cell proliferation and alignment. Journal of Biomedical Materials Research - Part A, 2009, 88A, 644-653.	2.1	37
105	Mimicking natural cell environments: design, fabrication and application of bio-chemical gradients on polymeric biomaterial substrates. Journal of Materials Chemistry B, 2016, 4, 4244-4257.	2.9	37
106	Trends in Double Networks as Bioprintable and Injectable Hydrogel Scaffolds for Tissue Regeneration. ACS Biomaterials Science and Engineering, 2021, 7, 4077-4101.	2.6	37
107	Surface modifications by gas plasma control osteogenic differentiation of MC3T3-E1 cells. Acta Biomaterialia, 2012, 8, 2969-2977.	4.1	36
108	The Use of Finite Element Analyses to Design and Fabricate Three-Dimensional Scaffolds for Skeletal Tissue Engineering. Frontiers in Bioengineering and Biotechnology, 2017, 5, 30.	2.0	36

#	Article	IF	CITATIONS
109	Anatomical 3D Fiber-Deposited Scaffolds for Tissue Engineering: Designing a Neotrachea. Tissue Engineering, 2007, 13, 2483-2493.	4.9	35
110	Regenerating Articular Tissue by Converging Technologies. PLoS ONE, 2008, 3, e3032.	1.1	35
111	Additive manufactured polymeric 3D scaffolds with tailored surface topography influence mesenchymal stromal cells activity. Biofabrication, 2016, 8, 025012.	3.7	35
112	Self-assembly of electrospun nanofibers into gradient honeycomb structures. Materials and Design, 2019, 168, 107614.	3.3	35
113	A hybrid additive manufacturing platform to create bulk and surface composition gradients on scaffolds for tissue regeneration. Nature Communications, 2021, 12, 500.	5.8	35
114	Increased cell seeding efficiency in bioplotted three-dimensional PEOT/PBT scaffolds. Journal of Tissue Engineering and Regenerative Medicine, 2016, 10, 679-689.	1.3	34
115	Multivalency Enables Dynamic Supramolecular Host–Guest Hydrogel Formation. Biomacromolecules, 2020, 21, 2208-2217.	2.6	34
116	Tuning Hydrogels by Mixing Dynamic Cross‣inkers: Enabling Cellâ€Instructive Hydrogels and Advanced Bioinks. Advanced Healthcare Materials, 2022, 11, e2101576.	3.9	34
117	Micro-fabricated scaffolds lead to efficient remission of diabetes in mice. Biomaterials, 2017, 135, 10-22.	5.7	33
118	Degradable amorphous scaffolds with enhanced mechanical properties and homogeneous cell distribution produced by a threeâ€dimensional fiber deposition method. Journal of Biomedical Materials Research - Part A, 2012, 100A, 2739-2749.	2.1	32
119	A thermo-sensitive chitosan/pectin hydrogel for long-term tumor spheroid culture. Carbohydrate Polymers, 2021, 274, 118633.	5.1	32
120	<i>In vivo</i> screening of extracellular matrix components produced under multiple experimental conditions implanted in one animal. Integrative Biology (United Kingdom), 2013, 5, 889-898.	0.6	31
121	Thin Polymer Brush Decouples Biomaterial's Micro-/Nanotopology and Stem Cell Adhesion. Langmuir, 2013, 29, 13843-13852.	1.6	31
122	A combinatorial approach towards the design of nanofibrous scaffolds for chondrogenesis. Scientific Reports, 2015, 5, 14804.	1.6	31
123	Glycosaminoglycan functionalization of electrospun scaffolds enhances Schwann cell activity. Acta Biomaterialia, 2019, 96, 188-202.	4.1	31
124	A quantitative method to analyse F-actin distribution in cells. MethodsX, 2019, 6, 2562-2569.	0.7	31
125	Mesenchymal stromal cell-derived extracellular matrix influences gene expression of chondrocytes. Biofabrication, 2013, 5, 025003.	3.7	30
126	Poly(caprolactone- <i>co</i> -trimethylenecarbonate) urethane acrylate resins for digital light processing of bioresorbable tissue engineering implants. Biomaterials Science, 2019, 7, 4984-4989.	2.6	30

#	Article	IF	CITATIONS
127	3D-printed bioactive scaffolds from nanosilicates and PEOT/PBT for bone tissue engineering. International Journal of Energy Production and Management, 2019, 6, 29-37.	1.9	30
128	Strategies to Improve Nanofibrous Scaffolds for Vascular Tissue Engineering. Nanomaterials, 2020, 10, 887.	1.9	30
129	Monolithic and assembled polymer–ceramic composites for bone regeneration. Acta Biomaterialia, 2013, 9, 5708-5717.	4.1	29
130	Influence of PCL molecular weight on mesenchymal stromal cell differentiation. RSC Advances, 2015, 5, 54510-54516.	1.7	29
131	Additive manufacturing of an elastic poly(ester)urethane for cartilage tissue engineering. Acta Biomaterialia, 2020, 102, 192-204.	4.1	29
132	Realizing tissue integration with supramolecular hydrogels. Acta Biomaterialia, 2021, 124, 1-14.	4.1	29
133	Soft, Dynamic Hydrogel Confinement Improves Kidney Organoid Lumen Morphology and Reduces Epithelial–Mesenchymal Transition in Culture. Advanced Science, 2022, 9, e2200543.	5.6	29
134	Layered PEGDA hydrogel for islet of Langerhans encapsulation and improvement of vascularization. Journal of Materials Science: Materials in Medicine, 2017, 28, 195.	1.7	28
135	Chondrogenesis of human adipose-derived mesenchymal stromal cells on the [devitalized costal cartilage matrix/poly(vinyl alcohol)/fibrin] hybrid scaffolds. European Polymer Journal, 2019, 118, 528-541.	2.6	27
136	Bioprinting Via a Dual-Gel Bioink Based on Poly(Vinyl Alcohol) and Solubilized Extracellular Matrix towards Cartilage Engineering. International Journal of Molecular Sciences, 2021, 22, 3901.	1.8	27
137	Biomimetic Mechanically Strong One-Dimensional Hydroxyapatite/Poly(<scp>d</scp> , <scp>l</scp> -lactide) Composite Inducing Formation of Anisotropic Collagen Matrix. ACS Nano, 2021, 15, 17480-17498.	7.3	27
138	Finite Element Analysis of Meniscal Anatomical 3D Scaffolds: Implications for Tissue Engineering. Open Biomedical Engineering Journal, 2007, 1, 23-34.	0.7	26
139	Tailoring the Foreign Body Response for <i>In Situ</i> Vascular Tissue Engineering. Tissue Engineering - Part C: Methods, 2015, 21, 436-446.	1.1	26
140	Tailoring chemical and physical properties of fibrous scaffolds from block copolyesters containing ether and thio-ether linkages for skeletal differentiation of human mesenchymal stromal cells. Biomaterials, 2016, 76, 261-272.	5.7	26
141	Stability and Cell Adhesion Properties of Poly(N-isopropylacrylamide) Brushes with Variable Grafting Densities. Australian Journal of Chemistry, 2011, 64, 1261.	0.5	25
142	Tissue engineering of the tympanic membrane using electrospun PEOT/PBT copolymer scaffolds: A morphological in vitro study. Hearing, Balance and Communication, 2015, 13, 133-147.	0.1	25
143	Evaluation of Cartilage Repair by Mesenchymal Stem Cells Seeded on a PEOT/PBT Scaffold in an Osteochondral Defect. Annals of Biomedical Engineering, 2015, 43, 2069-2082.	1.3	25
144	Patterning Vasculature: The Role of Biofabrication to Achieve an Integrated Multicellular Ecosystem. ACS Biomaterials Science and Engineering, 2016, 2, 1694-1709.	2.6	25

#	Article	IF	CITATIONS
145	Fundamentals of light-cell–polymer interactions in photo-cross-linking based bioprinting. APL Bioengineering, 2020, 4, 041502.	3.3	25
146	Chondrocytes Cocultured with Stromal Vascular Fraction of Adipose Tissue Present More Intense Chondrogenic Characteristics Than with Adipose Stem Cells. Tissue Engineering - Part A, 2016, 22, 336-348.	1.6	24
147	A three-dimensional biomimetic peripheral nerve model for drug testing and disease modelling. Biomaterials, 2020, 257, 120230.	5.7	24
148	Tuning Cell Behavior on 3D Scaffolds Fabricated by Atmospheric Plasma-Assisted Additive Manufacturing. ACS Applied Materials & Interfaces, 2021, 13, 3631-3644.	4.0	24
149	Adapted chondrogenic differentiation of human mesenchymal stem cells via controlled release of TGF-β1 from poly(ethylene oxide)-terephtalate/poly(butylene terepthalate) multiblock scaffolds. Journal of Biomedical Materials Research - Part A, 2015, 103, 371-383.	2.1	23
150	Geometric constraints of endothelial cell migration on electrospun fibres. Scientific Reports, 2018, 8, 6386.	1.6	23
151	3D porous Ti6Al4V-beta-tricalcium phosphate scaffolds directly fabricated by additive manufacturing. Acta Biomaterialia, 2021, 126, 496-510.	4.1	23
152	Bioprinting of kidney <i>in vitro</i> models: cells, biomaterials, and manufacturing techniques. Essays in Biochemistry, 2021, 65, 587-602.	2.1	23
153	What can biofabrication do for space and what can space do for biofabrication?. Trends in Biotechnology, 2022, 40, 398-411.	4.9	23
154	3D Printed Dualâ€Porosity Scaffolds: The Combined Effect of Stiffness and Porosity in the Modulation of Macrophage Polarization. Advanced Healthcare Materials, 2022, 11, e2101415.	3.9	23
155	Sustained delivery of growth factors with high loading efficiency in a layer by layer assembly. Biomaterials Science, 2019, 8, 174-188.	2.6	22
156	Degradable polymers for tissue engineering. , 2008, , 193-221.		21
157	High content imaging in the screening of biomaterial-induced MSC behavior. Biomaterials, 2013, 34, 1498-1505.	5.7	21
158	Schwann cells promote endothelial cell migration. Cell Adhesion and Migration, 2015, 9, 441-451.	1.1	21
159	Plug and play: combining materials and technologies to improve bone regenerative strategies. Journal of Tissue Engineering and Regenerative Medicine, 2015, 9, 745-759.	1.3	21
160	Multimaterial, heterogeneous, and multicellular three-dimensional bioprinting. MRS Bulletin, 2017, 42, 578-584.	1.7	21
161	A novel method for engineering autologous non-thrombogenic in situ tissue-engineered blood vessels for arteriovenous grafting. Biomaterials, 2020, 229, 119577.	5.7	21
162	Controllable four axis extrusion-based additive manufacturing system for the fabrication of tubular scaffolds with tailorable mechanical properties. Materials Science and Engineering C, 2021, 119, 111472.	3.8	21

#	Article	IF	CITATIONS
163	Biological activity of human mesenchymal stromal cells on polymeric electrospun scaffolds. Biomaterials Science, 2019, 7, 1088-1100.	2.6	20
164	Microfluidic bioprinting towards a renal in vitro model. Bioprinting, 2020, 20, e00108.	2.9	20
165	Methods of Monitoring Cell Fate and Tissue Growth in Three-Dimensional Scaffold-Based Strategies for <i>In Vitro</i> Tissue Engineering. Tissue Engineering - Part B: Reviews, 2016, 22, 265-283.	2.5	19
166	Soft-molecular imprinted electrospun scaffolds to mimic specific biological tissues. Biofabrication, 2018, 10, 045005.	3.7	19
167	Additive manufactured, highly resilient, elastic, and biodegradable poly(ester)urethane scaffolds with chondroinductive properties for cartilage tissue engineering. Materials Today Bio, 2020, 6, 100051.	2.6	19
168	Modeling mechanical signals on the surface of µCT and CAD based rapid prototype scaffold models to predict (early stage) tissue development. Biotechnology and Bioengineering, 2014, 111, 1864-1875.	1.7	18
169	Distribution and Viability of Fetal and Adult Human Bone Marrow Stromal Cells in a Biaxial Rotating Vessel Bioreactor after Seeding on Polymeric 3D Additive Manufactured Scaffolds. Frontiers in Bioengineering and Biotechnology, 2015, 3, 169.	2.0	18
170	Cells responding to surface structure of calcium phosphate ceramics for bone regeneration. Journal of Tissue Engineering and Regenerative Medicine, 2017, 11, 3273-3283.	1.3	18
171	Biomimetic double network hydrogels: Combining dynamic and static crosslinks to enable biofabrication and control cellâ€matrix interactions. Journal of Polymer Science, 2021, 59, 2832-2843.	2.0	18
172	Fabrication of multiâ€well chips for spheroid cultures and implantable constructs through rapid prototyping techniques. Biotechnology and Bioengineering, 2015, 112, 1457-1471.	1.7	17
173	Additive Manufactured Scaffolds for Bone Tissue Engineering: Physical Characterization of Thermoplastic Composites with Functional Fillers. ACS Applied Polymer Materials, 2021, 3, 3788-3799.	2.0	17
174	Chitin Nanofibril Application in Tympanic Membrane Scaffolds to Modulate Inflammatory and Immune Response. Pharmaceutics, 2021, 13, 1440.	2.0	17
175	Intraâ€articular delivery of glucosamine for treatment of experimental osteoarthritis created by a medial meniscectomy in a rat model. Journal of Orthopaedic Research, 2014, 32, 302-309.	1.2	16
176	3D screening device for the evaluation of cell response to different electrospun microtopographies. Acta Biomaterialia, 2017, 55, 310-322.	4.1	16
177	Hybrid Polyester-Hydrogel Electrospun Scaffolds for Tissue Engineering Applications. Frontiers in Bioengineering and Biotechnology, 2019, 7, 231.	2.0	16
178	Scaffold-free and label-free biofabrication technology using levitational assembly in a high magnetic field. Biofabrication, 2020, 12, 045022.	3.7	16
179	Glycosaminoglycans: From Vascular Physiology to Tissue Engineering Applications. Frontiers in Chemistry, 2021, 9, 680836.	1.8	16
180	Decellularized Extracellular Matrix Scaffolds for Cartilage Regeneration. Methods in Molecular Biology, 2015, 1340, 133-151.	0.4	15

#	Article	IF	CITATIONS
181	Tailorable Surface Morphology of 3D Scaffolds by Combining Additive Manufacturing with Thermally Induced Phase Separation. Macromolecular Rapid Communications, 2017, 38, 1700186.	2.0	15
182	Dimensionality changes actin network through lamin A/C and zyxin. Biomaterials, 2020, 240, 119854.	5.7	15
183	SCREENED: A Multistage Model of Thyroid Gland Function for Screening Endocrine-Disrupting Chemicals in a Biologically Sex-Specific Manner. International Journal of Molecular Sciences, 2020, 21, 3648.	1.8	15
184	Shaping and properties of thermoplastic scaffolds in tissue regeneration: The effect of thermal history on polymer crystallization, surface characteristics and cell fate. Journal of Materials Research, 2021, 36, 3914-3935.	1.2	15
185	Incorporation of Superparamagnetic Iron Oxide Nanoparticles into Collagen Formulation for 3D Electrospun Scaffolds. Nanomaterials, 2022, 12, 181.	1.9	15
186	Fabrication of nanofibrous scaffolds for tissue engineering applications. , 2013, , 158-183.		14
187	Shape-defined solid micro-objects from poly(d,l-lactic acid) as cell-supportive counterparts in bottom-up tissue engineering. Materials Today Bio, 2019, 4, 100025.	2.6	14
188	Probing the pH Microenvironment of Mesenchymal Stromal Cell Cultures on Additiveâ€Manufactured Scaffolds. Small, 2020, 16, e2002258.	5.2	14
189	Thermosensitive chitosan-based hydrogels supporting motor neuron-like NSC-34 cell differentiation. Biomaterials Science, 2021, 9, 7492-7503.	2.6	14
190	Cranioplasty with patient-specific implants in repeatedly reconstructed cases. Journal of Cranio-Maxillo-Facial Surgery, 2019, 47, 709-714.	0.7	13
191	Parallels between the Developing Vascular and Neural Systems: Signaling Pathways and Future Perspectives for Regenerative Medicine. Advanced Science, 2021, 8, e2101837.	5.6	13
192	Universal Strategy for Designing Shape Memory Hydrogels. , 2022, 4, 701-706.		13
193	Moldâ€Based Application of Laserâ€Induced Periodic Surface Structures (LIPSS) on Biomaterials for Nanoscale Patterning. Macromolecular Bioscience, 2016, 16, 43-49.	2.1	12
194	Promoting Tropoelastin Expression in Arterial and Venous Vascular Smooth Muscle Cells and Fibroblasts for Vascular Tissue Engineering. Tissue Engineering - Part C: Methods, 2016, 22, 923-931.	1.1	12
195	Recent Advancements in Regenerative Approaches for Thymus Rejuvenation. Advanced Science, 2021, 8, 2100543.	5.6	12
196	Mimicking the Human Tympanic Membrane: The Significance of Scaffold Geometry. Advanced Healthcare Materials, 2021, 10, e2002082.	3.9	12
197	(Macro)Molecular Imprinting of Proteins on PCL Electrospun Scaffolds. ACS Applied Materials & Interfaces, 2021, 13, 29293-29302.	4.0	12
198	Additive Manufacturing Using Melt Extruded Thermoplastics for Tissue Engineering. Methods in Molecular Biology, 2021, 2147, 75-99.	0.4	12

#	Article	IF	CITATIONS
199	3D culture platform of human iPSCs-derived nociceptors for peripheral nerve modeling and tissue innervation. Biofabrication, 2022, 14, 014105.	3.7	12
200	Cardiovascular 3D bioprinting: A review on cardiac tissue development. Bioprinting, 2022, 28, e00221.	2.9	12
201	Tissue engineering – an introduction. , 2008, , xii-xxxvi.		11
202	Functional Tissue Engineering Through Biofunctional Macromolecules and Surface Design. MRS Bulletin, 2010, 35, 584-590.	1.7	11
203	Incorporation of nanostructured hydroxyapatite and poly(<i>N</i> -isopropylacrylamide) in demineralized bone matrix enhances osteoblast and human mesenchymal stem cell activity. Biointerphases, 2015, 10, 041001.	0.6	11
204	Biological and Tribological Assessment of Poly(Ethylene Oxide Terephthalate)/Poly(Butylene) Tj ETQq0 0 0 rgBT/C Regeneration. Advanced Healthcare Materials, 2016, 5, 232-243.	Overlock 1 3.9	0 Tf 50 547 11
205	Development of Injectable Thermosensitive Chitosan-Based Hydrogels for Cell Encapsulation. Applied Sciences (Switzerland), 2020, 10, 6550.	1.3	11
206	Ultrahigh-water-content biocompatible gelatin-based hydrogels: Toughened through micro-sized dissipative morphology as an effective strategy. Materials Science and Engineering C, 2021, 120, 111750.	3.8	11
207	Long-term preservation effects on biological properties of acellular placental sponge patches. Materials Science and Engineering C, 2021, 121, 111814.	3.8	11
208	The convergence of high-tech emerging technologies into the next stage of organ-on-a-chips. Biomaterials and Biosystems, 2021, 1, 100012.	1.0	11
209	Regenerative therapies for tympanic membrane. Progress in Materials Science, 2022, 127, 100942.	16.0	11
210	Controlled Surface Initiated Polymerization of <i>N</i> â€Isopropylacrylamide from Polycaprolactone Substrates for Regulating Cell Attachment and Detachment. Israel Journal of Chemistry, 2012, 52, 339-346.	1.0	10
211	Glucose Gradients Influence Zonal Matrix Deposition in 3D Cartilage Constructs. Tissue Engineering - Part A, 2014, 20, 3270-3278.	1.6	10
212	Poly(amido amine)-based multilayered thin films on 2D and 3D supports for surface-mediated cell transfection. Journal of Controlled Release, 2015, 205, 181-189.	4.8	10
213	From fiber curls to mesh waves: a platform for the fabrication of hierarchically structured nanofibers mimicking natural tissue formation. Nanoscale, 2019, 11, 14312-14321.	2.8	10
214	Contribution of bone marrow-derived cells to in situ engineered tissue capsules in a rat model of chronic kidney disease. Biomaterials, 2019, 194, 47-56.	5.7	10
215	Fabrication of a self-assembled honeycomb nanofibrous scaffold to guide endothelial morphogenesis. Biofabrication, 2020, 12, 045001.	3.7	10
216	4D Printed Shape Morphing Biocompatible Materials Based on Anisotropic Ferromagnetic Nanoparticles. Advanced Functional Materials, 2022, 32, .	7.8	10

#	Article	IF	CITATIONS
217	Spatiotemporal proliferation of human stromal cells adjusts to nutrient availability and leads to stanniocalcin-1 expression inÂvitro and inÂvivo. Biomaterials, 2015, 61, 190-202.	5.7	9
218	Decellularized Porcine Achilles Tendon Induces Anti-inflammatory Macrophage Phenotype InÂVitro and Tendon Repair In Vivo. Journal of Immunology and Regenerative Medicine, 2020, 8, 100027.	0.2	9
219	Effects of Fiber Alignment and Coculture with Endothelial Cells on Osteogenic Differentiation of Mesenchymal Stromal Cells. Tissue Engineering - Part C: Methods, 2020, 26, 11-22.	1.1	9
220	Potential of CO2-laser processing of quartz for fast prototyping of microfluidic reactors and templates for 3D cell assembly over large scale. Materials Today Bio, 2021, 12, 100163.	2.6	9
221	Long-Term Controlled Growth Factor Release Using Layer-by-Layer Assembly for the Development of <i>In Vivo</i> Tissue-Engineered Blood Vessels. ACS Applied Materials & Interfaces, 2022, 14, 28591-28603.	4.0	9
222	3D-Fiber Deposition for Tissue Engineering and Organ Printing Applications. , 2010, , 225-239.		8
223	The physics of tissue formation with mesenchymal stem cells. Trends in Biotechnology, 2012, 30, 583-590.	4.9	8
224	3D fiber deposited polymeric scaffolds for external auditory canal wall. Journal of Materials Science: Materials in Medicine, 2018, 29, 63.	1.7	8
225	An efficient and easily adjustable heating stage for digital light processing set-ups. Additive Manufacturing, 2021, 46, 102102.	1.7	8
226	Fiber diameter, porosity and functional group gradients in electrospun scaffolds. Biomedical Materials (Bristol), 2020, 15, 045020.	1.7	8
227	Additive Manufacturing of α-Amino Acid Based Poly(ester amide)s for Biomedical Applications. Biomacromolecules, 2022, , .	2.6	8
228	Development of a device useful to reproducibly produce large quantities of viable and uniform stem cell spheroids with controlled diameters. Materials Science and Engineering C, 2022, 135, 112685.	3.8	8
229	Effect of high content nanohydroxyapatite composite scaffolds prepared via melt extrusion additive manufacturing on the osteogenic differentiation of human mesenchymal stromal cells. , 2022, 137, 212833.		8
230	3D Culture Modeling of Metastatic Breast Cancer Cells in Additive Manufactured Scaffolds. ACS Applied Materials & Interfaces, 2022, 14, 28389-28402.	4.0	8
231	3D printing of jammed self-supporting microgels with alternative mechanism for shape fidelity, crosslinking and conductivity. Additive Manufacturing, 2022, 58, 102997.	1.7	8
232	Converge and regenerate. Nature Materials, 2006, 5, 437-438.	13.3	7
233	A Protocol to Enhance INS1E and MIN6 Functionality—The Use of Theophylline. International Journal of Molecular Sciences, 2016, 17, 1532.	1.8	7
234	Enhancement of synthesis of extracellular matrix proteins on retinoic acid loaded electrospun scaffolds. Journal of Materials Chemistry B, 2018, 6, 6468-6480.	2.9	7

#	Article	IF	CITATIONS
235	Ultraviolet Functionalization of Electrospun Scaffolds to Activate Fibrous Runways for Targeting Cell Adhesion. Frontiers in Bioengineering and Biotechnology, 2019, 7, 159.	2.0	7
236	Decellularization of porcine heart tissue to obtain extracellular matrix based hydrogels. Methods in Cell Biology, 2020, 157, 3-21.	0.5	7
237	Evolution of Metastasis Study Models toward Metastasisâ€Onâ€Aâ€Chip: The Ultimate Model?. Small, 2021, 17, 2006009.	5.2	7
238	Fabrication of a mimetic vascular graft using melt spinning with tailorable fiber parameters. , 2022, 139, 212972.		7
239	Evaluating Osteoarthritic Chondrocytes through a Novel 3-Dimensional <i>In Vitro</i> System for Cartilage Tissue Engineering and Regeneration. Cartilage, 2012, 3, 128-140.	1.4	6
240	An Open Source Image Processing Method to Quantitatively Assess Tissue Growth after Non-Invasive Magnetic Resonance Imaging in Human Bone Marrow Stromal Cell Seeded 3D Polymeric Scaffolds. PLoS ONE, 2014, 9, e115000.	1.1	6
241	Differentiation capacity and maintenance of differentiated phenotypes of human mesenchymal stromal cells cultured on two distinct types of 3D polymeric scaffolds. Integrative Biology (United Kingdom), 2015, 7, 1574-1586.	0.6	6
242	Nerve Repair: Biomimetic Architectures for Peripheral Nerve Repair: A Review of Biofabrication Strategies (Adv. Healthcare Mater. 8/2018). Advanced Healthcare Materials, 2018, 7, 1870035.	3.9	6
243	Tandem electrospinning for heterogeneous nanofiber patterns. Biofabrication, 2020, 12, 025010.	3.7	6
244	Biomimetic Scaffolds Obtained by Electrospinning of Collagen-Based Materials: Strategies to Hinder the Protein Denaturation. Materials, 2021, 14, 4360.	1.3	6
245	Peripheral neurovascular link: an overview of interactions and in vitro models. Trends in Endocrinology and Metabolism, 2021, 32, 623-638.	3.1	6
246	Neurovascular signals in amyotrophic lateral sclerosis. Current Opinion in Biotechnology, 2022, 74, 75-83.	3.3	6
247	β-Tricalcium phosphate nanofiber scaffolds with fine unidirectional grains. Materials Letters, 2017, 208, 118-121.	1.3	5
248	Biofabrication: From Additive Manufacturing to Bioprinting. , 2019, , 41-41.		5
249	Mechanosensitive regulation of stanniocalcin-1 by zyxin and actin-myosin in human mesenchymal stromal cells. Stem Cells, 2020, 38, 948-959.	1.4	5
250	A comparative study of mesenchymal stem cells cultured as cellâ€only aggregates and in encapsulated hydrogels. Journal of Tissue Engineering and Regenerative Medicine, 2021, , .	1.3	5
251	High Throughput Screening withÂBiofabrication Platforms. , 2015, , 187-213.		4
252	Osteochondral Regeneration: Tuning Cell Differentiation into a 3D Scaffold Presenting a Pore Shape Gradient for Osteochondral Regeneration (Adv. Healthcare Mater. 14/2016). Advanced Healthcare Materials, 2016, 5, 1832-1832.	3.9	4

#	Article	IF	CITATIONS
253	An antibody based approach for multi-coloring osteogenic and chondrogenic proteins in tissue engineered constructs. Biomedical Materials (Bristol), 2018, 13, 044102.	1.7	4
254	Lab-on-a-brane for spheroid formation. Biofabrication, 2019, 11, 021002.	3.7	4
255	Bioinspired Development of an In Vitro Engineered Fracture Callus for the Treatment of Critical Long Bone Defects. Advanced Functional Materials, 2021, 31, 2104159.	7.8	4
256	Critical Steps toward a Tissue-Engineered Cartilage Implant Using Embryonic Stem Cells. Tissue Engineering, 2008, 14, 135-147.	4.9	4
257	Development of an In Vitro Biomimetic Peripheral Neurovascular Platform. ACS Applied Materials & Interfaces, 2022, 14, 31567-31585.	4.0	4
258	Correction: Biofunctionalized pectin hydrogels as 3D cellular microenvironments. Journal of Materials Chemistry B, 2015, 3, 8422-8422.	2.9	3
259	Multiwell three-dimensional systems enable in vivo screening of immune reactions to biomaterials: a new strategy toward translational biomaterial research. Journal of Materials Science: Materials in Medicine, 2019, 30, 61.	1.7	3
260	A Oneâ€Step Biofunctionalization Strategy of Electrospun Scaffolds Enables Spatially Selective Presentation of Biological Cues. Advanced Materials Technologies, 2020, 5, 2000269.	3.0	3
261	Effect of the reduced graphene oxide (rGO) compaction degree and concentration on rGO–polymer composite printability and cell interactions. Nanoscale, 2021, 13, 14382-14398.	2.8	3
262	Cholecalciferol as Bioactive Plasticizer of High Molecular Weight Poly(D,L-Lactic Acid) Scaffolds for Bone Regeneration. Tissue Engineering - Part C: Methods, 2022, 28, 335-350.	1.1	3
263	Joint Cartilage Tissue Engineering and Pre-Clinical Safety and Efficacy Testing. , 2011, , .		2
264	Cell Adhesion: Stem ell Clinging by a Thread: AFM Measure of Polymerâ€Brush Lateral Deformation (Adv. Mater. Interfaces 3/2016). Advanced Materials Interfaces, 2016, 3, .	1.9	2
265	Actomyosin and the MRTF-SRF pathway downregulate FGFR1 in mesenchymal stromal cells. Communications Biology, 2020, 3, 576.	2.0	2
266	Control Delivery of Multiple Growth Factors to Actively Steer Differentiation and Extracellular Matrix Protein Production. Advanced Biology, 2021, 5, 2000205.	1.4	2
267	Safe-by-design strategies applied to scaffold hybrid manufacturing. Journal of Physics: Conference Series, 2021, 1953, 012009.	0.3	2
268	Static systems to obtain 3D spheroid cell models: a cost analysis comparing the implementation of four types of microwell array inserts. Biochemical Engineering Journal, 2022, 182, 108414.	1.8	2
269	An innervated skin 3D in vitro model for dermatological research. In Vitro Models, 0, , .	1.0	2
270	Electrospun Scaffolds Functionalized with a Hydrogen Sulfide Donor Stimulate Angiogenesis. ACS Applied Materials & Interfaces, 0, , .	4.0	2

#	ARTICLE	IF	CITATIONS
271	Biofabrication approaches and regulatory framework of metastatic tumorâ€onâ€aâ€chip models for precision oncology. Medicinal Research Reviews, 0, , .	5.0	2
272	Electrospinning: A Fast Process for Imprinting Micro and Nano Patterns on Electrospun Fiber Meshes at Physiological Temperatures (Small 20/2013). Small, 2013, 9, 3544-3544.	5.2	1
273	Upscaling of high-throughput material platforms in two and three dimensions. , 2013, , 133-154.		1
274	Supporting data of spatiotemporal proliferation of human stromal cells adjusts to nutrient availability and leads to stanniocalcin-1 expression in vitro and in vivo. Data in Brief, 2015, 5, 84-94.	0.5	1
275	Characterization of Additive Manufactured Scaffolds. , 2018, , 55-78.		1
276	Size Effects in Finite Element Modelling of 3D Printed Bone Scaffolds Using Hydroxyapatite PEOT/PBT Composites. Mathematics, 2021, 9, 1746.	1.1	1
277	Biophysics of biofabrication. APL Bioengineering, 2021, 5, 030402.	3.3	1
278	PEOT/PBT Polymeric Pastes to Fabricate Additive Manufactured Scaffolds for Tissue Engineering. Frontiers in Bioengineering and Biotechnology, 2021, 9, 704185.	2.0	1
279	Design of Biphasic Polymeric 3-Dimensional Fiber Deposited Scaffolds for Cartilage Tissue Engineering Applications. Tissue Engineering, 2006, .	4.9	1
280	Characterization of Additive Manufactured Scaffolds. , 2017, , 1-25.		1
281	Editorial: "Design, Modeling and Manufacturing of Scaffolds to Control Cell-Biomaterial Interactions in Tissue Engineering― Frontiers in Bioengineering and Biotechnology, 2022, 10, 868362.	2.0	1
282	Biphasic Polymeric Shell-Core 3D Fiber Deposited Scaffolds Enhance Chondrocyte Differentiation. Materials Research Society Symposia Proceedings, 2006, 925, 1.	0.1	0
283	Feeling the life. , 2011, , .		0
284	Fabrication and antimicrobial effects of silver nanoparticle-poly(N-isopropylacrylamide)-poly(ferrocenylsilane) hydrogel composites. Materials Research Society Symposia Proceedings, 2012, 1453, 21.	0.1	0
285	Cartilage repair in an osteochondral defect in a rabbit model. Osteoarthritis and Cartilage, 2013, 21, S120.	0.6	0
286	Back Cover: Macromol. Biosci. 1/2016. Macromolecular Bioscience, 2016, 16, 168-168.	2.1	0
287	pH Monitoring: Probing the pH Microenvironment of Mesenchymal Stromal Cell Cultures on Additiveâ€Manufactured Scaffolds (Small 34/2020). Small, 2020, 16, 2070187.	5.2	0

Autologous Mandril-Based Vascular Grafts. , 2020, , 271-293.

#	Article	IF	CITATIONS
289	3D Liver Models: Biofabrication of Hepatic Constructs by 3D Bioprinting of a Cellâ€Laden Thermogel: An Effective Tool to Assess Drugâ€Induced Hepatotoxic Response (Adv. Healthcare Mater. 21/2020). Advanced Healthcare Materials, 2020, 9, 2070078.	3.9	0
290	Funktionelle Eigenschaften von mittels Tissue Engineering Techniken gefertigtemalloplastischen Trommelfell-Ersatz. , 2021, 100, .		0
291	Functional properties of eardrum replacement scaffolds from tissue engineering techniques. Laryngo- Rhino- Otologie, 2021, 100, .	0.2	0
292	Autologous Mandril-Based Vascular Grafts. , 2020, , 1-23.		0
293	Functional properties of eardrum replacement scaffolds from tissue engineering techniques. , 2020, 99, .		Ο