Jesus Corres

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7802564/publications.pdf

Version: 2024-02-01

106 papers	2,783 citations	172457 29 h-index	189892 50 g-index
107 all docs	107 docs citations	107 times ranked	2213 citing authors

#	Article	IF	CITATIONS
1	Lossy Mode Resonances Generated in Planar Configuration for Two-Parameter Sensing. IEEE Sensors Journal, 2022, 22, 11264-11270.	4.7	1
2	Multichannel Refractometer Based on Lossy Mode Resonances. IEEE Sensors Journal, 2022, 22, 3181-3187.	4.7	8
3	Simultaneous Generation of Surface Plasmon and Lossy Mode Resonances in the Same Planar Platform. Sensors, 2022, 22, 1505.	3.8	9
4	Optical Fiber Vacuum Sensor Based on Etched SMS Structure and PDMS Coating. IEEE Sensors Journal, 2021, 21, 9698-9705.	4.7	5
5	Intrusive Passive Optical Tapping Device. IEEE Access, 2021, 9, 31627-31637.	4.2	O
6	Dually nanocoated planar waveguides towards multi-parameter sensing. Scientific Reports, 2021, 11, 3669.	3.3	22
7	Interdigital concept in photonic sensors based on an array of lossy mode resonances. Scientific Reports, 2021, 11, 13228.	3.3	13
8	Dual-Cavity Fiber Fabry-Perot Interferometer Coated With SnO ₂ for Relative Humidity and Temperature Sensing. IEEE Sensors Journal, 2020, 20, 14195-14201.	4.7	22
9	Generation of lossy mode resonances in a broadband range with multilayer coated coverslips optimized for humidity sensing. Sensors and Actuators B: Chemical, 2020, 325, 128795.	7.8	13
10	Generation of lossy mode resonances with different nanocoatings deposited on coverslips. Optics Express, 2020, 28, 288.	3 . 4	24
11	Improving the width of lossy mode resonances in a reflection configuration D-shaped fiber by nanocoating laser ablation. Optics Letters, 2020, 45, 4738.	3.3	13
12	Simultaneous Measurement of Refractive Index and Temperature using LMR on planar waveguide. , 2020, , .		2
13	Fluorescent Sensors for the Detection of Heavy Metal lons in Aqueous Media. Sensors, 2019, 19, 599.	3.8	180
14	Lossy mode resonance sensors based on lateral light incidence in nanocoated planar waveguides. Scientific Reports, 2019, 9, 8882.	3.3	43
15	Generation of Lossy Mode Resonances in Planar Waveguides Toward Development of Humidity Sensors. Journal of Lightwave Technology, 2019, 37, 2300-2306.	4.6	21
16	Optical fiber vacuum sensor based on modal interferometer and PDMS coating. , 2019, , .		0
17	Label-free wavelength and phase detection based SMS fiber immunosensors optimized with cladding etching. Sensors and Actuators B: Chemical, 2018, 265, 10-19.	7.8	36
18	Temperature Compensated Strain Sensor Based on Long-Period Gratings and Microspheres. IEEE Photonics Technology Letters, 2018, 30, 67-70.	2.5	22

#	Article	IF	CITATIONS
19	Optimized Strain Long-Period Fiber Grating (LPFG) Sensors Operating at the Dispersion Turning Point. Journal of Lightwave Technology, 2018, 36, 2240-2247.	4.6	40
20	[INVITED] Nanofabrication of phase-shifted Bragg gratings on the end facet of multimode fiber towards development of optical filters and sensors. Optics and Laser Technology, 2018, 101, 49-56.	4.6	2
21	Optical Fiber Immunosensors Optimized with Cladding Etching and ITO Nanodeposition. , 2018, , .		5
22	Fabrication of Long Period Gratings by Periodically Removing the Coating of Cladding-Etched Single Mode Optical Fiber Towards Optical Fiber Sensor Development. Sensors, 2018, 18, 1866.	3.8	9
23	Fiber-Optic Immunosensor Based on an Etched SMS Structure. IEEE Journal of Selected Topics in Quantum Electronics, 2017, 23, 314-321.	2.9	25
24	Fabrication of Bragg Gratings on the End Facet of Standard Optical Fibers by Sputtering the Same Material. Journal of Lightwave Technology, 2017, 35, 212-219.	4.6	6
25	Wavelength and Phase Detection Based SMS Fiber Sensors Optimized With Etching and Nanodeposition. Journal of Lightwave Technology, 2017, 35, 3743-3749.	4.6	39
26	High Sensitivity Optical Structures for Relative Humidity Sensing. Smart Sensors, Measurement and Instrumentation, 2017, , 55-79.	0.6	3
27	Magnetic Field Sensors Based on Optical Fiber. Smart Sensors, Measurement and Instrumentation, 2017, , 269-299.	0.6	1
28	Optical sensors based on lossy-mode resonances. Sensors and Actuators B: Chemical, 2017, 240, 174-185.	7.8	182
29	Refractive index sensing performance of a Bragg grating built up on the tip of an optical fiber by reactive sputtering. , 2017 , , .		0
30	Study of ammonia and nitric oxide sensing performance of a Fabry-Perot interferometer. , 2017, , .		0
31	Recent Developments in Fiber Optics Humidity Sensors. Sensors, 2017, 17, 893.	3.8	178
32	Monitoring the Etching Process in LPFGs towards Development of Highly Sensitive Sensors. Proceedings (mdpi), 2017, 1, .	0.2	2
33	Etched and Nanocoated SMS Fiber Sensor for Detection of Salinity Concentration. Proceedings (mdpi), 2017, 1, .	0.2	2
34	Humidity Sensor Based on Bragg Gratings Developed on the End Facet of an Optical Fiber by Sputtering of One Single Material. Sensors, 2017, 17, 991.	3.8	19
35	Sensitivity Enhancement in Low Cutoff Wavelength Long-Period Fiber Gratings by Cladding Diameter Reduction. Sensors, 2017, 17, 2094.	3.8	23
36	Micro and Nanostructured Materials for the Development of Optical Fibre Sensors. Sensors, 2017, 17, 2312.	3.8	48

#	Article	IF	Citations
37	Increasing the Sensitivity of an Optic Level Sensor With a Wavelength and Phase Sensitive Single-Mode Multimode Single-Mode Fiber Structure. IEEE Sensors Journal, 2017, 17, 5515-5522.	4.7	17
38	Sensitivity optimization with cladding-etched long period fiber gratings at the dispersion turning point. Optics Express, 2016, 24, 17680.	3.4	58
39	SnO2-MOF-Fabry-Perot humidity optical sensor system based on fast Fourier transform technique. , 2016, , .		0
40	Cladding etched single mode optical fiber refractometer based on Lossy Mode Resonances. , 2016, , .		1
41	Magnetic field optical sensor based on Lossy Mode Resonances. , 2016, , .		3
42	Fiber-optic immunosensor based on lossy mode resonances induced by indium tin oxide thin-films. , $2016, , .$		3
43	Fabrication of Optical Fiber Sensors for Measuring Ageing Transformer Oil in Wavelength. IEEE Sensors Journal, 2016, 16, 4798-4802.	4.7	15
44	Competition oriented learning experience in electronics: Robot fabrication from scratch. , 2016, , .		2
45	Single-modeâ€"multimodeâ€"single-mode and lossy mode resonance-based devices: a comparative study for sensing applications. Microsystem Technologies, 2016, 22, 1633-1638.	2.0	10
46	High sensitivity humidity sensor based on cladding-etched optical fiber and lossy mode resonances. Sensors and Actuators B: Chemical, 2016, 233, 7-16.	7.8	94
47	Etched LPFGs in Reflective Configuration for Sensitivity and Attenuation Band Depth Increase. IEEE Photonics Technology Letters, 2016, 28, 1077-1080.	2.5	5
48	Humidity sensor based on lossy mode resonances on an etched single mode fiber. , 2015, , .		1
49	Nanocoated optical fibre for lossy mode resonance (LMR) sensors and filters. , 2015, , .		2
50	Sensors Based on Thin-Film Coated Cladding Removed Multimode Optical Fiber and Single-Mode Multimode Single-Mode Fiber: A Comparative Study. Journal of Sensors, 2015, 2015, 1-7.	1.1	10
51	Analysis of lossy mode resonances on thin-film coated cladding removed plastic fiber. Optics Letters, 2015, 40, 4867.	3.3	14
52	Magnetic field sensor based on a single mode-multimode-single mode optical fiber structure. , 2015, , .		2
53	Optical Fiber Current Transducer Using Lossy Mode Resonances for High Voltage Networks. Journal of Lightwave Technology, 2015, 33, 2504-2510.	4.6	23
54	Temperature sensor based on a hybrid ITO-silica resonant cavity. Optics Express, 2015, 23, 1930.	3.4	20

#	Article	IF	Citations
55	A comparative study between SMS interferometers and lossy mode resonace optical fiber devices for sensing applications. Proceedings of SPIE, 2015 , , .	0.8	2
56	Asymmetrically and symmetrically coated tapered optical fiber for sensing applications. , 2015, , .		0
57	Low voltage transducer based on the changes in the wavelength of the attenuation band. , 2014, , .		2
58	Optical fiber humidity sensor based on a tapered fiber asymmetrically coated with indium tin oxide. , 2014, , .		7
59	Celiac disease biodetection using lossy-mode resonances generated in tapered single-mode optical fibers. , 2014, , .		0
60	Fiber-optic Lossy Mode Resonance Sensors. Procedia Engineering, 2014, 87, 3-8.	1.2	26
61	Optical fiber current transducer using lossy mode resonances for high voltage networks. Proceedings of SPIE, 2014, , .	0.8	0
62	Sensitivity enhancement in a multimode interference-based SMS fibre structure coated with a thin-film: Theoretical and experimental study. Sensors and Actuators B: Chemical, 2014, 190, 363-369.	7.8	36
63	Spectral width reduction in lossy mode resonance-based sensors by means of tapered optical fibre structures. Sensors and Actuators B: Chemical, 2014, 200, 53-60.	7.8	48
64	Refractometric sensors based on multimode interference in a thin-film coated single-mode–multimode–single-mode structure with reflection configuration. Applied Optics, 2014, 53, 3913.	1.8	34
65	Fiber optic sensors based on lossy mode resonances. , 2014, , .		0
66	Optimization of Sensors Based on Multimode Interference in Single-Mode–Multimode–Single-Mode Structure. Journal of Lightwave Technology, 2013, 31, 3460-3468.	4.6	25
67	High sensitivity optical fiber pH sensor using poly(acrylic acid) nanofibers. , 2013, , .		2
68	Mode transition in complex refractive index coated single-mode–multimode–single-mode structure. Optics Express, 2013, 21, 12668.	3.4	34
69	Tunable electro-optic wavelength filter based on lossy-guided mode resonances. Optics Express, 2013, 21, 31668.	3.4	22
70	Fiber-optic biosensor based on lossy mode resonances. Sensors and Actuators B: Chemical, 2012, 174, 263-269.	7.8	54
71	Tapered Single-Mode Optical Fiber pH Sensor Based on Lossy Mode Resonances Generated by a Polymeric Thin-Film. IEEE Sensors Journal, 2012, 12, 2598-2603.	4.7	36
72	Lossy mode resonances dependence on the geometry of a tapered monomode optical fiber. Sensors and Actuators A: Physical, 2012, 180, 25-31.	4.1	16

#	Article	IF	Citations
73	An antibacterial submicron fiber mat with <i>in situ</i> synthesized silver nanoparticles. Journal of Applied Polymer Science, 2012, 126, 1228-1235.	2.6	26
74	Influence of Waist Length in Lossy Mode Resonances Generated With Coated Tapered Single-Mode Optical Fibers. IEEE Photonics Technology Letters, 2011, 23, 1579-1581.	2.5	17
75	Optical Fiber Humidity Sensors Using PVdF Electrospun Nanowebs. IEEE Sensors Journal, 2011, 11, 2383-2387.	4.7	69
76	Optical fiber sensors based on Layer-by-Layer nanostructured films. Procedia Engineering, 2010, 5, 1087-1090.	1.2	19
77	Vibration Detection Using Optical Fiber Sensors. Journal of Sensors, 2010, 2010, 1-12.	1.1	93
78	A fibre optic humidity sensor based on a long-period fibre grating coated with a thin film of SiO ₂ nanospheres. Measurement Science and Technology, 2009, 20, 034002.	2.6	54
79	STUDY OF SUPERHYDROPHILIC NANOPARTICLE-BASED ULTRA-THIN FILMS TOWARDS THE DEVELOPMENT OF OPTICAL FIBER HUMIDITY SENSORS. International Journal on Smart Sensing and Intelligent Systems, 2009, 2, 63-74.	0.7	0
80	Fiber optic glucose sensor based on bionanofilms. Sensors and Actuators B: Chemical, 2008, 131, 633-639.	7.8	19
81	Tapered optical fiber biosensor for the detection of anti-gliadin antibodies. Sensors and Actuators B: Chemical, 2008, 135, 166-171.	7.8	54
82	Optical Fiber Humidity Sensors Using Nanostructured Coatings of SiO\$_{2}\$ Nanoparticles. IEEE Sensors Journal, 2008, 8, 281-285.	4.7	70
83	Optical Fibre Humidity Sensors Using Nano-films. Lecture Notes in Electrical Engineering, 2008, , 153-177.	0.4	6
84	Encapsulated Quantum Dot Nanofilms Inside Hollow Core Optical Fibers for Temperature Measurement. IEEE Sensors Journal, 2008, 8, 1368-1374.	4.7	17
85	Humidity sensor based on a long-period fiber grating coated with a SiO 2 -nanosphere film. , 2008, , .		1
86	Two-Layer Nanocoatings in Long-Period Fiber Gratings for Improved Sensitivity of Humidity Sensors. IEEE Nanotechnology Magazine, 2008, 7, 394-400.	2.0	40
87	Experimental results of antigliadin antibodies detection using long period fiber grating. Proceedings of SPIE, 2008, , .	0.8	1
88	Study and Optimization of Self-Assembled Polymeric Multilayer Structures with Neutral Red for pH Sensing Applications. Journal of Sensors, 2008, 2008, 1-7.	1.1	17
89	Fiber optic temperature sensor depositing quantum dots inside hollow core fibers using the layer by layer technique. Proceedings of SPIE, 2007, , .	0.8	8
90	Fiber-optic pH-sensors in long-period fiber gratings using electrostatic self-assembly. Optics Letters, 2007, 32, 29.	3.3	78

#	Article	IF	CITATIONS
91	Evanescent Field Fiber-Optic Sensors for Humidity Monitoring Based on Nanocoatings. IEEE Sensors Journal, 2007, 7, 89-95.	4.7	53
92	Design of pH Sensors in Long-Period Fiber Gratings Using Polymeric Nanocoatings. IEEE Sensors Journal, 2007, 7, 455-463.	4.7	75
93	Tapered Optical Fiber Biosensor for the Detection of Anti-Gliadin Antibodies. , 2007, , .		3
94	Sensitivity optimization of tapered optical fiber humidity sensors by means of tuning the thickness of nanostructured sensitive coatings. Sensors and Actuators B: Chemical, 2007, 122, 442-449.	7.8	120
95	Enhanced Sensitivity in Humidity Sensors based on Long Period Fiber Gratings. , 2006, , .		5
96	Nonadiabatic tapered single-mode fiber coated with humidity sensitive nanofilms. IEEE Photonics Technology Letters, 2006, 18, 935-937.	2.5	49
97	Spectral evolution with incremental nanocoating of long period fiber gratings. Optics Express, 2006, 14, 11972.	3.4	21
98	Nanofilms on hollow core fiber-based structures: an optical study. Journal of Lightwave Technology, 2006, 24, 2100-2107.	4.6	24
99	Design of Humidity Sensors Based on Tapered Optical Fibers. Journal of Lightwave Technology, 2006, 24, 4329-4336.	4.6	118
100	Vibration monitoring in electrical engines using an in-line fiber etalon. Sensors and Actuators A: Physical, 2006, 132, 506-515.	4.1	21
101	Nanofilms on a hollow core fiber. Optical Engineering, 2006, 45, 050503.	1.0	3
102	Fiber optic glucose biosensor. Optical Engineering, 2006, 45, 104401.	1.0	17
103	Unbalance and harmonics detection in induction motors using an optical fiber sensor. IEEE Sensors Journal, 2006, 6, 605-612.	4.7	41
104	Unbalance Detection in Electrical Engines Using an In-Line Fiber Etalon., 2005,,.		2
105	Electrical machine failure detection using an in-line fiber etalon. , 2005, 5855, 715.		0
106	A new speed observer with guaranteed bounds using interval arithmetic., 0,,.		0