Timothy J. Buschman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7802401/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	In V1, attending is not learning to see. Neuron, 2022, 110, 561-563.	3.8	Ο
2	Shared mechanisms underlie the control of working memory and attention. Nature, 2021, 592, 601-605.	13.7	178
3	Rotational dynamics reduce interference between sensory and memory representations. Nature Neuroscience, 2021, 24, 715-726.	7.1	98
4	ls Activity Silent Working Memory Simply Episodic Memory?. Trends in Cognitive Sciences, 2021, 25, 284-293.	4.0	50
5	Balancing Flexibility and Interference in Working Memory. Annual Review of Vision Science, 2021, 7, 367-388.	2.3	14
6	Delay-period activity in frontal, parietal, and occipital cortex tracks noise and biases in visual working memory. PLoS Biology, 2020, 18, e3000854.	2.6	20
7	Low-Dimensional Spatiotemporal Dynamics Underlie Cortex-wide Neural Activity. Current Biology, 2020, 30, 2665-2680.e8.	1.8	57
8	Drifting codes within a stable coding scheme for working memory. PLoS Biology, 2020, 18, e3000625.	2.6	57
9	Learning to control the brain through adaptive closed-loop patterned stimulation. Journal of Neural Engineering, 2020, 17, 056007.	1.8	17
10	Drifting codes within a stable coding scheme for working memory. , 2020, 18, e3000625.		0
11	Drifting codes within a stable coding scheme for working memory. , 2020, 18, e3000625.		0
12	Drifting codes within a stable coding scheme for working memory. , 2020, 18, e3000625.		0
13	Drifting codes within a stable coding scheme for working memory. , 2020, 18, e3000625.		Ο
14	Drifting codes within a stable coding scheme for working memory. , 2020, 18, e3000625.		0
15	Drifting codes within a stable coding scheme for working memory. , 2020, 18, e3000625.		0
16	Error-correcting dynamics in visual working memory. Nature Communications, 2019, 10, 3366.	5.8	73
17	A Flexible Model of Working Memory. Neuron, 2019, 103, 147-160.e8.	3.8	112
18	Perineuronal Nets, Inhibitory Interneurons, and Anxiety-Related Ventral Hippocampal Neuronal Oscillations Are Altered by Early Life Adversity. Biological Psychiatry, 2019, 85, 1011-1020.	0.7	85

TIMOTHY J. BUSCHMAN

#	Article	IF	CITATIONS
19	Working Memory Load Modulates Neuronal Coupling. Cerebral Cortex, 2019, 29, 1670-1681.	1.6	22
20	Intrinsic neuronal dynamics predict distinct functional roles during working memory. Nature Communications, 2018, 9, 3499.	5.8	96
21	Evidence supporting a role for astrocytes in the regulation of cognitive flexibility and neuronal oscillations through the Ca2+ binding protein S100β. PLoS ONE, 2018, 13, e0195726.	1.1	51
22	Prefrontal Cortex Networks Shift from External to Internal Modes during Learning. Journal of Neuroscience, 2016, 36, 9739-9754.	1.7	36
23	Gamma and Beta Bursts Underlie Working Memory. Neuron, 2016, 90, 152-164.	3.8	631
24	Stimulus Load and Oscillatory Activity in Higher Cortex. Cerebral Cortex, 2016, 26, 3772-3784.	1.6	71
25	Paying Attention to the Details of Attention. Neuron, 2015, 86, 1111-1113.	3.8	6
26	Working Memory Capacity: Limits on the Bandwidth of Cognition. Daedalus, 2015, 144, 112-122.	0.9	32
27	Cortical information flow during flexible sensorimotor decisions. Science, 2015, 348, 1352-1355.	6.0	375
28	From Behavior to Neural Dynamics: An Integrated Theory of Attention. Neuron, 2015, 88, 127-144.	3.8	245
29	PFC Neurons Reflect Categorical Decisions about Ambiguous Stimuli. Journal of Cognitive Neuroscience, 2014, 26, 1283-1291.	1.1	35
30	Goal-direction and top-down control. Philosophical Transactions of the Royal Society B: Biological Sciences, 2014, 369, 20130471.	1.8	90
31	Prefrontal dopamine in associative learning and memory. Neuroscience, 2014, 282, 217-229.	1.1	102
32	Cortical circuits for the control of attention. Current Opinion in Neurobiology, 2013, 23, 216-222.	2.0	207
33	Synchronous Oscillatory Neural Ensembles for Rules in the Prefrontal Cortex. Neuron, 2012, 76, 838-846.	3.8	388
34	Comparison of Primate Prefrontal and Premotor Cortex Neuronal Activity during Visual Categorization. Journal of Cognitive Neuroscience, 2011, 23, 3355-3365.	1.1	37
35	Neural substrates of cognitive capacity limitations. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 11252-11255.	3.3	245
36	Laminar differences in gamma and alpha coherence in the ventral stream. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 11262-11267.	3.3	547

TIMOTHY J. BUSCHMAN

#	Article	IF	CITATIONS
37	Shifting the Spotlight of Attention: Evidence for Discrete Computations in Cognition. Frontiers in Human Neuroscience, 2010, 4, 194.	1.0	64
38	Prefrontal Cortex Activity during Flexible Categorization. Journal of Neuroscience, 2010, 30, 8519-8528.	1.7	135
39	Serial, Covert Shifts of Attention during Visual Search Are Reflected by the Frontal Eye Fields and Correlated with Population Oscillations. Neuron, 2009, 63, 386-396.	3.8	238
40	The Representation of Multiple Objects in Prefrontal Neuronal Delay Activity. Cerebral Cortex, 2007, 17, i41-i50.	1.6	96
41	Top-Down Versus Bottom-Up Control of Attention in the Prefrontal and Posterior Parietal Cortices. Science, 2007, 315, 1860-1862.	6.0	1,989
42	A parieto-frontal network for visual numerical information in the monkey. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 7457-7462.	3.3	464
43	Categorical Representation of Visual Stimuli in the Primate Prefrontal Cortex. Science, 2001, 291, 312-316.	6.0	983
44	An Integrative Theory of Prefrontal Cortex Function. Annual Review of Neuroscience, 2001, 24, 167-202.	5.0	10,240
45	Single neurons in prefrontal cortex encode abstract rules. Nature, 2001, 411, 953-956.	13.7	901
46	The prefontral cortex and cognitive control. Nature Reviews Neuroscience, 2000, 1, 59-65.	4.9	1,770
47	Task-Specific Neural Activity in the Primate Prefrontal Cortex. Journal of Neurophysiology, 2000, 84, 451-459.	0.9	423
48	Prospective Coding for Objects in Primate Prefrontal Cortex. Journal of Neuroscience, 1999, 19, 5493-5505.	1.7	397
49	The Prefrontal Cortex. Neuron, 1999, 22, 15-17.	3.8	252
50	Selective representation of relevant information by neurons in the primate prefrontal cortex. Nature, 1998, 393, 577-579.	13.7	571
51	Neural Activity in the Primate Prefrontal Cortex during Associative Learning. Neuron, 1998, 21, 1399-1407.	3.8	542
52	Memory fields of neurons in the primate prefrontal cortex. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 15008-15013.	3.3	258
53	Neural Mechanisms of Visual Working Memory in Prefrontal Cortex of the Macaque. Journal of Neuroscience, 1996, 16, 5154-5167.	1.7	1,363
54	Parallel neuronal mechanisms for short-term memory. Science, 1994, 263, 520-522.	6.0	600

TIMOTHY J. BUSCHMAN

#	Article	IF	CITATIONS
55	A neural basis for visual search in inferior temporal cortex. Nature, 1993, 363, 345-347.	13.7	1,257
56	Suppression of visual responses of neurons in inferior temporal cortex of the awake macaque by addition of a second stimulus. Brain Research, 1993, 616, 25-29.	1.1	212
57	Activity of neurons in anterior inferior temporal cortex during a short- term memory task. Journal of Neuroscience, 1993, 13, 1460-1478.	1.7	711
58	Scopolamine affects short-term memory but not inferior temporal neurons. NeuroReport, 1993, 4, 81.	0.6	59
59	Habituation-like decrease in the responses of neurons in inferior temporal cortex of the macaque. Visual Neuroscience, 1991, 7, 357-362.	0.5	149
60	A neural mechanism for working and recognition memory in inferior temporal cortex. Science, 1991, 254, 1377-1379.	6.0	663