
Chengwei Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7802135/publications.pdf Version: 2024-02-01

CHENCWELLUL

#	Article	IF	CITATIONS
1	General and practical intramolecular decarbonylative coupling of thioesters <i>via</i> palladium catalysis. Organic Chemistry Frontiers, 2021, 8, 1587-1592.	2.3	16
2	Conversion of esters to thioesters under mild conditions. Organic and Biomolecular Chemistry, 2021, 19, 2991-2996.	1.5	13
3	Bimetallic Cooperative Catalysis for Decarbonylative Heteroarylation of Carboxylic Acids via Câ€O/Câ€H Coupling. Angewandte Chemie - International Edition, 2021, 60, 10690-10699.	7.2	64
4	Bimetallic Cooperative Catalysis for Decarbonylative Heteroarylation of Carboxylic Acids via Câ€O/Câ€H Coupling. Angewandte Chemie, 2021, 133, 10785-10794.	1.6	7
5	Decarbonylative Sonogashira Cross-Coupling of Carboxylic Acids. Organic Letters, 2021, 23, 4726-4730.	2.4	15
6	Rh(I)-Catalyzed Intramolecular Decarbonylation of Thioesters. Journal of Organic Chemistry, 2021, 86, 10829-10837.	1.7	17
7	Forging Câ^'S Bonds Through Decarbonylation: New Perspectives for the Synthesis of Privileged Aryl Sulfides. ChemCatChem, 2021, 13, 4878-4881.	1.8	12
8	Decarbonylative sulfide synthesis from carboxylic acids and thioesters <i>via</i> cross-over C–S activation and acyl capture. Organic Chemistry Frontiers, 2021, 8, 4805-4813.	2.3	17
9	Pd-Catalyzed Double-Decarbonylative Aryl Sulfide Synthesis through Aryl Exchange between Amides and Thioesters. Organic Letters, 2021, 23, 8098-8103.	2.4	27
10	Palladium-Catalyzed Decarbonylative Borylation of Aryl Anhydrides. Journal of Organic Chemistry, 2021, 86, 17445-17452.	1.7	7
11	Decarbonylative Sonogashira cross-coupling: a fruitful marriage of alkynes with carboxylic acid electrophiles. Organic Chemistry Frontiers, 2021, 9, 216-222.	2.3	9
12	Pentafluorophenyl Esters: Highly Chemoselective Ketyl Precursors for the Synthesis of α,α-Dideuterio Alcohols Using SmI ₂ and D ₂ O as a Deuterium Source. Organic Letters, 2020, 22, 1249-1253.	2.4	20
13	Rh-Catalyzed Base-Free Decarbonylative Borylation of Twisted Amides. Journal of Organic Chemistry, 2020, 85, 15676-15685.	1.7	14
14	<i>N</i> -Acyl-glutarimides: Effect of Glutarimide Ring on the Structures of Fully Perpendicular Twisted Amides and N–C Bond Cross-Coupling. Journal of Organic Chemistry, 2020, 85, 5475-5485.	1.7	21
15	<i>N</i> -Acyl-5,5-Dimethylhydantoins: Mild Acyl-Transfer Reagents for the Synthesis of Ketones Using Pd–PEPPSI or Pd/Phosphine Catalysts. Organic Process Research and Development, 2020, 24, 1043-1051.	1.3	7
16	Decarbonylative Phosphorylation of Carboxylic Acids via Redox-Neutral Palladium Catalysis. Organic Letters, 2019, 21, 9256-9261.	2.4	42
17	Synthesis of Biaryls via Decarbonylative Palladium-Catalyzed Suzuki-Miyaura Cross-Coupling of Carboxylic Acids. IScience, 2019, 19, 749-759.	1.9	71
18	Sterically Hindered Ketones via Palladium-Catalyzed Suzuki–Miyaura Cross-Coupling of Amides by N–C(O) Activation. Organic Letters, 2019, 21, 7976-7981.	2.4	27

Chengwei Liu

#	Article	IF	CITATIONS
19	Highly-chemoselective step-down reduction of carboxylic acids to aromatic hydrocarbons <i>via</i> palladium catalysis. Chemical Science, 2019, 10, 5736-5742.	3.7	45
20	Decarbonylative thioetherification by nickel catalysis using air- and moisture-stable nickel precatalysts. Chemical Communications, 2018, 54, 2130-2133.	2.2	95
21	Decarbonylative cross-coupling of amides. Organic and Biomolecular Chemistry, 2018, 16, 7998-8010.	1.5	138
22	The Most Twisted Acyclic Amides: Structures and Reactivity. Organic Letters, 2018, 20, 7771-7774.	2.4	41
23	Palladiumâ€Catalyzed Decarbonylative Borylation of Carboxylic Acids: Tuning Reaction Selectivity by Computation. Angewandte Chemie - International Edition, 2018, 57, 16721-16726.	7.2	98
24	Twisted <i>N</i> -Acyl-hydantoins: Rotationally Inverted Urea-Imides of Relevance in N–C(O) Cross-coupling. Journal of Organic Chemistry, 2018, 83, 14676-14682.	1.7	13
25	Palladiumâ€Catalyzed Decarbonylative Borylation of Carboxylic Acids: Tuning Reaction Selectivity by Computation. Angewandte Chemie, 2018, 130, 16963-16968.	1.6	71
26	Acyl and Decarbonylative Suzuki Coupling of <i>N</i> -Acetyl Amides: Electronic Tuning of Twisted, Acyclic Amides in Catalytic Carbon–Nitrogen Bond Cleavage. ACS Catalysis, 2018, 8, 9131-9139.	5.5	91
27	Palladium-Catalyzed Suzuki–Miyaura Cross-Coupling of N-Mesylamides by N–C Cleavage: Electronic Effect of the Mesyl Group. Organic Letters, 2017, 19, 1434-1437.	2.4	74
28	Frontispiece: Twisted Amides: From Obscurity to Broadly Useful Transitionâ€Metal atalyzed Reactions by Nâ^'C Amide Bond Activation. Chemistry - A European Journal, 2017, 23, .	1.7	1
29	N-Acylsuccinimides: twist-controlled, acyl-transfer reagents in Suzuki–Miyaura cross-coupling by N–C amide bond activation. Organic and Biomolecular Chemistry, 2017, 15, 8867-8871.	1.5	43
30	Decarbonylative Phosphorylation of Amides by Palladium and Nickel Catalysis: The Hirao Cross oupling of Amide Derivatives. Angewandte Chemie, 2017, 129, 12892-12896.	1.6	37
31	Decarbonylative Phosphorylation of Amides by Palladium and Nickel Catalysis: The Hirao Cross oupling of Amide Derivatives. Angewandte Chemie - International Edition, 2017, 56, 12718-12722.	7.2	152
32	Twisted Amides: From Obscurity to Broadly Useful Transitionâ€Metalâ€Catalyzed Reactions by Nâ^'C Amide Bond Activation. Chemistry - A European Journal, 2017, 23, 7157-7173.	1.7	278
33	Chemoselective Ketone Synthesis by the Addition of Organometallics to <i>N</i> -Acylazetidines. Organic Letters, 2016, 18, 2375-2378.	2.4	73
34	<i>N</i> -Acylsaccharins: Stable Electrophilic Amide-Based Acyl Transfer Reagents in Pd-Catalyzed Suzuki–Miyaura Coupling via N–C Cleavage. Organic Letters, 2016, 18, 4194-4197.	2.4	103
35	<i>N</i> -Acylsaccharins as Amide-Based Arylating Reagents via Chemoselective N–C Cleavage: Pd-Catalyzed Decarbonylative Heck Reaction. Journal of Organic Chemistry, 2016, 81, 12023-12030.	1.7	87
36	Syntheses of bimetallic rare-earth bis(cyclopentadienyl) derivatives supported by bridged bis(guanidinate) ligands and their catalytic property for the hydrophosphonylation of aldehydes. Journal of Organometallic Chemistry, 2016, 804, 59-65.	0.8	11

Chengwei Liu

#	Article	IF	CITATIONS
37	Syntheses of bimetallic lanthanide bis(amido) complexes stabilized by bridged bis(guanidinate) ligands and their catalytic activity toward the hydrophosphonylation reaction of aldehydes and ketones. Science China Chemistry, 2015, 58, 1451-1460.	4.2	6
38	<i>n</i> -BuLi as a Highly Efficient Precatalyst for Hydrophosphonylation of Aldehydes and Unactivated Ketones. Organic Letters, 2014, 16, 6172-6175.	2.4	46
39	Lanthanide anilido complexes: synthesis, characterization, and use as highly efficient catalysts for hydrophosphonylation of aldehydes and unactivated ketones. Dalton Transactions, 2014, 43, 8355.	1.6	13