List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7801833/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Positron Emission Tomographic Analysis of Central D1 and D2 Dopamine Receptor Occupancy in Patients Treated With Classical Neuroleptics and Clozapine. Archives of General Psychiatry, 1992, 49, 538.	12.3	1,357
2	Central D2-Dopamine Receptor Occupancy in Schizophrenic Patients Treated With Antipsychotic Drugs. Archives of General Psychiatry, 1988, 45, 71.	12.3	661
3	Central D2-dopamine receptor occupancy in relation to antipsychotic drug effects: A double-blind PET study of schizophrenic patients. Biological Psychiatry, 1993, 33, 227-235.	1.3	482
4	Age-Related Cognitive Deficits Mediated by Changes in the Striatal Dopamine System. American Journal of Psychiatry, 2000, 157, 635-637.	7.2	383
5	Distribution of D1- and D2-Dopamine Receptors, and Dopamine and Its Metabolites in the Human Brain. Neuropsychopharmacology, 1994, 11, 245-256.	5.4	366
6	Age-related dopamine D2/D3 receptor loss in extrastriatal regions of the human brain. Neurobiology of Aging, 2000, 21, 683-688.	3.1	313
7	Transplantation in Parkinson's disease: Two cases of adrenal medullary grafts to the putamen. Annals of Neurology, 1987, 22, 457-468.	5.3	270
8	The Serotonin System and Spiritual Experiences. American Journal of Psychiatry, 2003, 160, 1965-1969.	7.2	244
9	Support for dopaminergic hypoactivity in restless legs syndrome: a PET study on D2-receptor binding. Brain, 2006, 129, 2017-2028.	7.6	224
10	Meta-analysis of cognitive performance in drug-naÃ ⁻ ve patients with schizophrenia. Schizophrenia Research, 2014, 158, 156-162.	2.0	209
11	D2 dopamine receptors and personality traits. Nature, 1997, 385, 590-590.	27.8	198
12	Variability in D2-dopamine receptor density and affinity: A PET study with [11C]raclopride in man. Synapse, 1995, 20, 200-208.	1.2	176
13	Decreased Dopamine D2 Receptor Binding in the Anterior Cingulate Cortex in Schizophrenia. Archives of General Psychiatry, 2002, 59, 25.	12.3	173
14	Advancement in PET quantification using 3D-OP-OSEM point spread function reconstruction with the HRRT. European Journal of Nuclear Medicine and Molecular Imaging, 2009, 36, 1639-1650.	6.4	173
15	Imaging of [11C]-labelled RO 15-1788 binding to benzodiazepine receptors in the human brain by positron emission tomography. Journal of Psychiatric Research, 1985, 19, 609-622.	3.1	171
16	PET Study of D1Dopamine Receptor Binding in Neuroleptic-Naive Patients With Schizophrenia. American Journal of Psychiatry, 2002, 159, 761-767.	7.2	171
17	Preparation of 11C-labelled SCH 23390 for the in vivo study of dopamine D-1 receptors using positron emission tomography. International Journal of Radiation Applications and Instrumentation Part A, Applied Radiation and Isotopes, 1986, 37, 1039-1043.	0.5	169
18	Effect of the myeloperoxidase inhibitor AZD3241 on microglia: a PET study in Parkinson's disease. Brain, 2015, 138, 2687-2700.	7.6	168

#	Article	IF	CITATIONS
19	Quantification of [11C]FLB 457 Binding to Extrastriatal Dopamine Receptors in the Human Brain. Journal of Cerebral Blood Flow and Metabolism, 1999, 19, 1164-1173.	4.3	164
20	Pet study of [11C] β-CIT binding to monoamine transporters in the monkey and human brain. Synapse, 1994, 16, 93-103.	1.2	162
21	Antipsychotic Occupancy of Dopamine Receptors in Schizophrenia. CNS Neuroscience and Therapeutics, 2011, 17, 97-103.	3.9	154
22	Autoradiographic localization of extrastriatal D2-dopamine receptors in the human brain using [1251]epidepride. Synapse, 1996, 23, 115-123.	1.2	148
23	Comparison of the Transient Equilibrium and Continuous Infusion Method for Quantitative PET Analysis of [11C]Raclopride Binding. Journal of Cerebral Blood Flow and Metabolism, 1998, 18, 941-950.	4.3	144
24	PET examination of [11C]NNC 687 and [11C]NNC 756 as new radioligands for the D1-dopamine receptor. Psychopharmacology, 1993, 113, 149-156.	3.1	121
25	A PET Study of 5-HT2 and D2 Dopamine Receptor Occupancy Induced by Olanzapine in Healthy Subjects. Neuropsychopharmacology, 1997, 16, 1-7.	5.4	117
26	Autoradiographic localisation of D 3 -dopamine receptors in the human brain using the selective D 3 -dopamine receptor agonist (+)-[3 H]PD 128907. Psychopharmacology, 1996, 128, 240-247.	3.1	115
27	Low Dopamine D2Receptor Binding in Subregions of the Thalamus in Schizophrenia. American Journal of Psychiatry, 2004, 161, 1016-1022.	7.2	115
28	Autoradiographic localization of 5-HT2A receptors in the human brain using [3H]M100907 and [11C]M100907. Synapse, 2000, 38, 421-431.	1.2	113
29	Decreased thalamic D2/D3 receptor binding in drug-naive patients with schizophrenia: a PET study with [11C]FLB 457. International Journal of Neuropsychopharmacology, 2003, 6, 361-370.	2.1	110
30	Effect of amphetamine on dopamine D2 receptor binding in nonhuman primate brain: A comparison of the agonist radioligand [11C]MNPA and antagonist [11C]raclopride. Synapse, 2006, 59, 260-269.	1.2	108
31	Preclinical Comparison of the Blood–brain barrier Permeability of Osimertinib with Other EGFR TKIs. Clinical Cancer Research, 2021, 27, 189-201.	7.0	106
32	Raclopride, a new selective ligand for the dopamine-D2 receptors. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 1988, 12, 559-568.	4.8	104
33	Dopamine D1 receptors and age differences in brain activation during working memory. Neurobiology of Aging, 2011, 32, 1849-1856.	3.1	103
34	Comparison of the In Vitro Receptor Binding Properties of N-[3H]Methylspiperone and [3H]Raclopride to Rat and Human Brain Membranes. Journal of Neurochemistry, 1990, 55, 2048-2057.	3.9	98
35	Effect of reserpine-induced depletion of synaptic dopamine on [11C]Raclopride binding to D2-dopamine receptors in the monkey brain. , 1997, 25, 321-325.		96
36	Extrastriatal dopamine D2 receptor density and affinity in the human brain measured by 3D PET. International Journal of Neuropsychopharmacology, 1999, 2, 73-82.	2.1	96

#	Article	IF	CITATIONS
37	PET Analysis Indicates Atypical Central Dopamine Receptor Occupancy in Clozapine-Treated Patients. British Journal of Psychiatry, 1992, 160, 30-33.	2.8	94
38	Differentiation of extrastriatal dopamine D2 receptor density and affinity in the human brain using PET. NeuroImage, 2004, 22, 794-803.	4.2	92
39	Xanomeline: A selective muscarinic agonist for the treatment of Alzheimer's disease. Drug Development Research, 1997, 40, 158-170.	2.9	89
40	Maps of receptor binding parameters in the human brain ? a kinetic analysis of PET measurements. European Journal of Nuclear Medicine and Molecular Imaging, 1990, 16, 257-265.	2.1	88
41	The immune response of the human brain to abdominal surgery. Annals of Neurology, 2017, 81, 572-582.	5.3	87
42	Kinetic analysis and test-retest variability of the radioligand [11C](R)-PK11195 binding to TSPO in the human brain - a PET study in control subjects. EJNMMI Research, 2012, 2, 15.	2.5	86
43	Dopamine and cognitive functioning: Brain imaging findings in Huntington's disease and normal aging. Scandinavian Journal of Psychology, 2001, 42, 287-296.	1.5	82
44	Positron Emission Tomography of <i>in-vivo</i> Binding Characteristics of Atypical Antipsychotic Drugs. British Journal of Psychiatry, 1996, 168, 40-44.	2.8	81
45	Saturation analysis of specific11C Ro 15-1788 binding to the human neocortex using positron emission tomography. Human Psychopharmacology, 1989, 4, 21-31.	1.5	80
46	[11C]AZ10419369: A selective 5-HT1B receptor radioligand suitable for positron emission tomography (PET). Characterization in the primate brain. NeuroImage, 2008, 41, 1075-1085.	4.2	78
47	[11C]?-CIT-FE, a radioligand for quantitation of the dopamine transporter in the living brain using positron emission tomography. , 1996, 22, 386-390.		76
48	[18F]Flumazenil binding to central benzodiazepine receptor studies by PET. NeuroImage, 2009, 45, 891-902.	4.2	74
49	Changes in striatal D2-receptor density following chronic treatment with amphetamine as assessed with pet in nonhuman primates. , 1999, 31, 154-162.		73
50	Quantitative Analysis of [¹¹ C]AZ10419369 Binding to 5-HT _{1B} Receptors in Human Brain. Journal of Cerebral Blood Flow and Metabolism, 2011, 31, 113-123.	4.3	72
51	Effects of age, BMI and sex on the glial cell marker TSPO — a multicentre [11C]PBR28 HRRT PET study. European Journal of Nuclear Medicine and Molecular Imaging, 2019, 46, 2329-2338.	6.4	70
52	In vitro and in vivo characterisation of nor-?-CIT: a potential radioligand for visualisation of the serotonin transporter in the brain. European Journal of Nuclear Medicine and Molecular Imaging, 1997, 24, 596-601.	2.1	68
53	Dopamine D2 receptor binding in drug-naÃ ⁻ ve patients with schizophrenia examined with raclopride-C11 and positron emission tomography. Psychiatry Research - Neuroimaging, 2006, 148, 165-173.	1.8	66
54	Associations between dopamine D2-receptor binding and cognitive performance indicate functional compartmentalization of the human striatum. NeuroImage, 2008, 40, 1287-1295.	4.2	65

#	Article	IF	CITATIONS
55	A PET study of D 1 -like dopamine receptor ligand binding. Psychopharmacology, 1999, 146, 220-227.	3.1	63
56	Reduced 5-HT1B receptor binding in the dorsal brain stem after cognitive behavioural therapy of major depressive disorder. Psychiatry Research - Neuroimaging, 2014, 223, 164-170.	1.8	61
57	Application of cross-species PET imaging to assess neurotransmitter release in brain. Psychopharmacology, 2015, 232, 4129-4157.	3.1	61
58	lodine-123 labeled nor-?-CIT as a potential tracer for serotonin transporter imaging in the human brain with single-photon emission tomography. European Journal of Nuclear Medicine and Molecular Imaging, 1997, 25, 19-23.	6.4	59
59	Metabolism of the PET ligand [11C]SCH 23390. Identification of two radiolabelled metabolites with HPLC. Human Psychopharmacology, 1994, 9, 25-31.	1.5	56
60	[11C]MADAM, a new serotonin transporter radioligand characterized in the monkey brain by PET. Synapse, 2005, 58, 173-183.	1.2	56
61	Diurnal and seasonal variation of the brain serotonin system in healthy male subjects. NeuroImage, 2015, 112, 225-231.	4.2	56
62	Effect of amphetamine on extrastriatal D2 dopamine receptor binding in the primate brain: A PET study. Synapse, 2000, 38, 138-143.	1.2	55
63	[carbonyl - 11 C]Desmethyl-WAY-100635 (DWAY) is a potent and selective radioligand for central 5-HT 1A receptors in vitro and in vivo. European Journal of Nuclear Medicine and Molecular Imaging, 1998, 25, 338-346.	6.4	54
64	Wavelet-Aided Parametric Mapping of Cerebral Dopamine D2 Receptors Using the High Affinity PET Radioligand [11C]FLB 457. NeuroImage, 2002, 17, 47-60.	4.2	53
65	PET imaging of [11C]PBR28 in Parkinson's disease patients does not indicate increased binding to TSPO despite reduced dopamine transporter binding. European Journal of Nuclear Medicine and Molecular Imaging, 2019, 46, 367-375.	6.4	50
66	In vivo evidence of a functional association between immune cells in blood and brain in healthy human subjects. Brain, Behavior, and Immunity, 2016, 54, 149-157.	4.1	48
67	Measurement of serotonin transporter binding with PET and [11C]MADAM: A test–retest reproducibility study. Synapse, 2006, 60, 256-263.	1.2	47
68	Quantification of serotonin transporter availability with [11C]MADAM — A comparison between the ECAT HRRT and HR systems. NeuroImage, 2012, 60, 800-807.	4.2	47
69	Quantitative Analysis of ¹⁸ F-(<i>E</i>)- <i>N</i> -(3-lodoprop-2-Enyl)-2β-Carbofluoroethoxy-3β-(4′-Methyl-Phenyl) Nortropane Binding to the Dopamine Transporter in Parkinson Disease. Journal of Nuclear Medicine, 2015. 56. 714-720.	5.0	46
70	[11C]Ro 15-4513, a ligand for visualization of benzodiazepine receptor binding. Psychopharmacology, 1992, 108, 16-22.	3.1	44
71	Pindolol binding to 5-HT 1A receptors in the human brain confirmed with positron emission tomography. Psychopharmacology, 1999, 144, 303-305.	3.1	44
72	Association between striatal and extrastriatal dopamine D2-receptor binding and social desirability. Neurolmage, 2010, 50, 323-328.	4.2	44

#	Article	IF	CITATIONS
73	Pharmacokinetics and dosimetry of iodine-123 labelled PE2I in humans, a radioligand for dopamine transporter imaging. European Journal of Nuclear Medicine and Molecular Imaging, 1998, 25, 531-534.	6.4	41
74	GABA _A receptor availability is not altered in adults with autism spectrum disorder or in mouse models. Science Translational Medicine, 2018, 10, .	12.4	41
75	Dopamine D1 receptor availability is related to social behavior: A positron emission tomography study. NeuroImage, 2014, 102, 590-595.	4.2	37
76	Validity and reliability of extrastriatal [11C]raclopride binding quantification in the living human brain. NeuroImage, 2019, 202, 116143.	4.2	36
77	11C-SCH 39166, a selective ligand for visualization of dopamine-D1 receptor binding in the monkey brain using PET. Psychopharmacology, 1991, 103, 150-153.	3.1	35
78	Brain exposure of the ATM inhibitor AZD1390 in humans—a positron emission tomography study. Neuro-Oncology, 2021, 23, 687-696.	1.2	35
79	Large Variation in Brain Exposure of Reference CNS Drugs: a PET Study in Nonhuman Primates. International Journal of Neuropsychopharmacology, 2015, 18, pyv036.	2.1	34
80	Assessment of simplified ratio-based approaches for quantification of PET [11C]PBR28 data. EJNMMI Research, 2017, 7, 58.	2.5	33
81	Test–retest reliability of [11C]AZ10419369 binding to 5-HT1B receptors in human brain. European Journal of Nuclear Medicine and Molecular Imaging, 2014, 41, 301-307.	6.4	29
82	Quantification of Blood Flow-Dependent Component in Estimates of Beta-Amyloid Load Obtained Using Quasi-Steady-State Standardized Uptake Value Ratio. Journal of Cerebral Blood Flow and Metabolism, 2015, 35, 1485-1493.	4.3	27
83	Serotonin transporter availability in adults with autism—a positron emission tomography study. Molecular Psychiatry, 2021, 26, 1647-1658.	7.9	27
84	Development of a PET radioligand for the central 5-HT1B receptor: radiosynthesis and characterization in cynomolgus monkeys of eight radiolabeled compounds. Nuclear Medicine and Biology, 2011, 38, 261-272.	0.6	26
85	Positron emission tomography imaging of 5-hydroxytryptamine1B receptors in Parkinson's disease. Neurobiology of Aging, 2014, 35, 867-875.	3.1	25
86	Fenfluramine Reduces [11C]Cimbi-36 Binding to the 5-HT2A Receptor in the Nonhuman Primate Brain. International Journal of Neuropsychopharmacology, 2017, 20, 683-691.	2.1	25
87	D1-Dopamine Receptor Availability in First-Episode Neuroleptic Naive Psychosis Patients. International Journal of Neuropsychopharmacology, 2019, 22, 415-425.	2.1	25
88	Ligand metabolites in plasma during PET-studies with the11C-labelled dopamine antagonists, raclopride, SCH 23390 and N-methylspiroperidol. Human Psychopharmacology, 1992, 7, 97-103.	1.5	24
89	Brain neuroreceptor density and personality traits: towards dimensional biomarkers for psychiatric disorders. Philosophical Transactions of the Royal Society B: Biological Sciences, 2018, 373, 20170156.	4.0	24
90	Central 5-HT 2A and D 2 dopamine receptor occupancy after sublingual administration of ORG 5222 in healthy men. Psychopharmacology, 1997, 131, 339-345.	3.1	22

#	Article	IF	CITATIONS
91	Characterization of C-11 or I-123 Labelled ?-CIT-FP and ?-CIT-FE Metabolism Measured in Monkey and Human Plasma. Identification of Two Labelled Metabolites with HPLC. Human Psychopharmacology, 1996, 11, 483-490.	1.5	21
92	Distinct regional age effects on [11 C]AZ10419369 binding to 5-HT 1B receptors in the human brain. Neurolmage, 2014, 103, 303-308.	4.2	21
93	Development of rapid multistep carbon-11 radiosynthesis of the myeloperoxidase inhibitor AZD3241 to assess brain exposure by PET microdosing. Nuclear Medicine and Biology, 2015, 42, 555-560.	0.6	21
94	Low serotonin1B receptor binding potential in the anterior cingulate cortex in drug-free patients with recurrent major depressive disorder. Psychiatry Research - Neuroimaging, 2016, 253, 36-42.	1.8	21
95	Optimal Acquisition Time Window and Simplified Quantification of Dopamine Transporter Availability Using ¹⁸ F-FE-PE2I in Healthy Controls and Parkinson Disease Patients. Journal of Nuclear Medicine, 2016, 57, 1529-1534.	5.0	21
96	GABAA receptor occupancy by subtype selective GABAAα2,3 modulators: PET studies in humans. Psychopharmacology, 2017, 234, 707-716.	3.1	21
97	Test-retest reliability and convergent validity of (R)-[11C]PK11195 outcome measures without arterial input function. EJNMMI Research, 2018, 8, 102.	2.5	21
98	¹⁸ F-MCL-524, an ¹⁸ F-Labeled Dopamine D ₂ and D ₃ Receptor Agonist Sensitive to Dopamine: A Preliminary PET Study. Journal of Nuclear Medicine, 2014, 55, 1164-1170.	5.0	20
99	Reliability of volumetric and surface-based normalisation and smoothing techniques for PET analysis of the cortex: A test-retest analysis using [11C]SCH-23390. NeuroImage, 2017, 155, 344-353.	4.2	20
100	Lipophilic metabolite of [123I]β-CIT in human plasma may obstruct quantitation of the dopamine transporter. Synapse, 1995, 19, 297-300.	1.2	19
101	¹¹ C-carbonylation reactions using gas–liquid segmented microfluidics. RSC Advances, 2015, 5, 88886-88889.	3.6	19
102	5â€ <scp>HT</scp> _{1B} receptor imaging and cognition: A positron emission tomography study in control subjects and parkinson's disease patients. Synapse, 2015, 69, 365-374.	1.2	19
103	The MINDVIEW project: First results. European Psychiatry, 2018, 50, 21-27.	0.2	19
104	Synthesis of ([11C]carbonyl)raclopride and a comparison with ([11C]methyl)raclopride in a monkey PET study. Nuclear Medicine and Biology, 2015, 42, 893-898.	0.6	18
105	Clia Imaging Differentiates Multiple System Atrophy from Parkinson's Disease: A Positron Emission Tomography Study with [<scp>¹¹C</scp>] <scp>PBR28</scp> and Machine Learning Analysis. Movement Disorders, 2022, 37, 119-129.	3.9	18
106	Quantitative Analysis of Amyloid Deposition in Alzheimer Disease Using PET and the Radiotracer 11C-AZD2184. Journal of Nuclear Medicine, 2014, 55, 932-938.	5.0	17
107	The development of a GPR44 targeting radioligand [11C]AZ12204657 for in vivo assessment of beta cell mass. EJNMMI Research, 2018, 8, 113.	2.5	15
108	Bromine-76 and carbon-11 labelled NNC 13-8199, metabolically stable benzodiazepine receptor agonists as radioligands for positron emission tomography (PET). European Journal of Nuclear Medicine and Molecular Imaging, 1997, 24, 1261-1267.	6.4	14

#	Article	IF	CITATIONS
109	Synthesis and PET evaluation of (R)-[S-methyl-11C]thionisoxetine, a candidate radioligand for imaging brain norepinephrine transporters. Journal of Labelled Compounds and Radiopharmaceuticals, 2006, 49, 1007-1019.	1.0	14
110	Kinfitr—Âan open-source tool for reproducible PET modelling: validation and evaluation of test-retest reliability. EJNMMI Research, 2020, 10, 77.	2.5	14
111	Amphetamine Decreases Â2C-Adrenoceptor Binding of [11C]ORM-13070: A PET Study in the Primate Brain. International Journal of Neuropsychopharmacology, 2015, 18, pyu081-pyu081.	2.1	13
112	The metabotropic glutamate receptor 5 radioligand [11C]AZD9272 identifies unique binding sites in primate brain. Neuropharmacology, 2018, 135, 455-463.	4.1	13
113	Thalamic dopamine D2-receptor availability in schizophrenia: a study on antipsychotic-naive patients with first-episode psychosis and a meta-analysis. Molecular Psychiatry, 2022, 27, 1233-1240.	7.9	13
114	SPET imaging of central muscarinic acetylcholine receptors with iodine-123 labelled E-IQNP and Z-IQNP. European Journal of Nuclear Medicine and Molecular Imaging, 2001, 28, 13-24.	2.1	12
115	A PET study comparing receptor occupancy by five selective cannabinoid 1 receptor antagonists in non-human primates. Neuropharmacology, 2016, 101, 519-530.	4.1	12
116	High-resolution PET imaging reveals subtle impairment of the serotonin transporter in an early non-depressed Parkinson's disease cohort. European Journal of Nuclear Medicine and Molecular Imaging, 2020, 47, 2407-2416.	6.4	12
117	Serotonin concentration enhancers at clinically relevant doses reduce [11C]AZ10419369 binding to the 5-HT1B receptors in the nonhuman primate brain. Translational Psychiatry, 2018, 8, 132.	4.8	11
118	Low convergent validity of [11C]raclopride binding in extrastriatal brain regions: A PET study of within-subject correlations with [11C]FLB 457. NeuroImage, 2021, 226, 117523.	4.2	11
119	Iodine-123 labelled Z -(R , R)-IQNP: a potential radioligand for visualization of M 1 and M 2 muscarinic acetylcholine receptors in Alzheimer's disease. European Journal of Nuclear Medicine and Molecular Imaging, 1999, 26, 1482-1485.	6.4	10
120	Radiochemical labelling of the dopamine D3 receptor ligand RGH-1756. Journal of Labelled Compounds and Radiopharmaceuticals, 2000, 43, 1069-1074.	1.0	10
121	The pro-psychotic metabotropic glutamate receptor compounds fenobam and AZD9272 share binding sites with monoamine oxidase-B inhibitors in humans. Neuropharmacology, 2020, 162, 107809.	4.1	10
122	Synthesis of 2l̂²-carbomethoxy-3l̂²-(4-[76Br]bromophenyl)tropane ([76Br]l̂²-CBT), a pet tracer for in vivo imaging of the dopamine uptake sites. Journal of Labelled Compounds and Radiopharmaceuticals, 1995, 36, 385-392.	1.0	9
123	Initial human studies with single-photon emission tomography using iodine-123 labelled 3-(5-cyclopropyl-1,2,4-oxadiazo-3-yl)-7-iodo-5,6-dihydro-5-methyl-6-oxo-4H-imidazo[1,5-a][1,4]-benzodiazepine (NNC 13-8241). European Journal of Nuclear Medicine and Molecular Imaging, 1996, 23, 798-803.	2.1	9
124	Serotonin transporter occupancy by escitalopram and citalopram in the non-human primate brain: a [11C]MADAM PET study. Psychopharmacology, 2015, 232, 4159-4167.	3.1	9
125	Differential Effect of APOE Alleles on Brain Glucose Metabolism in Targeted Replacement Mice: An [18F]FDG-μPET Study. Journal of Alzheimer's Disease Reports, 2017, 1, 169-180.	2.2	9
126	[11C]SCH23390 binding to the D1-dopamine receptor in the human brain—a comparison of manual and automated methods for image analysis. EJNMMI Research, 2018, 8, 74.	2.5	9

#	Article	IF	CITATIONS
127	Pulmonary PET imaging confirms preferential lung target occupancy of an inhaled bronchodilator. EJNMMI Research, 2019, 9, 9.	2.5	9
128	Effects of cocaine on [11C]norepinephrine and [11C]β-CIT uptake in the primate peripheral organs measured by PET. Annals of Nuclear Medicine, 1996, 10, 85-88.	2.2	8
129	[11 C]AZ10419096 – a full antagonist PET radioligand for imaging brain 5-HT 1B receptors. Nuclear Medicine and Biology, 2017, 54, 34-40.	0.6	8
130	[11C]Cyclopropyl-FLB 457: A PET radioligand for low densities of dopamine D2 receptors. Bioorganic and Medicinal Chemistry, 2008, 16, 6467-6473.	3.0	7
131	Discovery and Preclinical Validation of [11C]AZ13153556, a Novel Probe for the Histamine Type 3 Receptor. ACS Chemical Neuroscience, 2016, 7, 177-184.	3.5	7
132	Characterization of [11C]Lu AE92686 as a PET radioligand for phosphodiesterase 10A in the nonhuman primate brain. European Journal of Nuclear Medicine and Molecular Imaging, 2017, 44, 308-320.	6.4	7
133	Quantification and reliability of [11C]VC - 002 binding to muscarinic acetylcholine receptors in the human lung — a test-retest PET study in control subjects. EJNMMI Research, 2020, 10, 59.	2.5	5
134	Integrated Strategy for Use of Positron Emission Tomography in Nonhuman Primates to Confirm Multitarget Occupancy of Novel Psychotropic Drugs: An Example with AZD3676. Journal of Pharmacology and Experimental Therapeutics, 2016, 358, 464-471.	2.5	4
135	Potential for imaging the high-affinity state of the 5-HT1B receptor: a comparison of three PET radioligands with differing intrinsic activity. EJNMMI Research, 2019, 9, 100.	2.5	4
136	No association between cortical dopamine D2 receptor availability and cognition in antipsychotic-naive first-episode psychosis. NPJ Schizophrenia, 2021, 7, 46.	3.6	3
137	TSPO binding may also represent â€~resting' microglia. Clinical and Translational Imaging, 2015, 3, 491-492.	2.1	2
138	In response to the letter "[11C]raclopride and extrastriatal binding to D2/3 receptors― NeuroImage, 2020, 207, 116371.	4.2	2
139	Dopamine D1 receptor availability is not associated with delusional ideation measures of psychosis proneness. Schizophrenia Research, 2020, 222, 175-184.	2.0	2
140	Decreased 5â€HT _{1A} binding in mild Alzheimer's disease—A positron emission tomography study. Synapse, 2022, 76, .	1.2	2
141	Synthesis of [11C]2?-carbomethoxy-3?-(3?-iodo-4?-methyl, -ethyl and isopropyl phenyl)nortropane as potential radiotracers for examination of the serotonin transporter with positron emission tomography. Journal of Labelled Compounds and Radiopharmaceuticals, 2000, 43, 1033-1046.	1.0	1
142	Neurokinin-3 Receptor Binding in Guinea Pig, Monkey, and Human Brain: In Vitro and in Vivo Imaging Using the Novel Radioligand, [¹⁸ F]Lu AF10628. International Journal of Neuropsychopharmacology, 2016, 19, pyw023.	2.1	1
143	The application of positron emission tomography in psychiatry. Nordic Journal of Psychiatry, 1988, 42, 107-110.	0.1	0
144	M7. LOWER THALAMIC DOPAMINE D2-RECEPTOR BINDING IN DRUG-NAIVE PATIENTS WITH PSYCHOSIS – A REPLICATION STUDY USING POSITRON EMISSION TOMOGRAPHY. Schizophrenia Bulletin, 2020, 46, S135-S136.	4.3	0

#	ŧ	Article	IF	CITATIONS
1	45	Effect of amphetamine on dopamine D2 receptor binding in the primate brain with the agonist ligand [11C]MNPA. Journal of Cerebral Blood Flow and Metabolism, 2005, 25, S646-S646.	4.3	0
1	46	Clia Imaging Shows Clinical Utility in Differentiating Parkinson's Disease from Multiple System Atrophy. Movement Disorders, 2022, 37, 1776-1778.	3.9	0
1	47	Synthesis and Preclinical Evaluation of [¹¹ C]AZ11895530 for PET Imaging of the Serotonin 1A Receptor. ACS Chemical Neuroscience, 2022, 13, 2078-2083.	3.5	0