Bo-Bo Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7800933/publications.pdf Version: 2024-02-01

RO-RO 7HANC

#	Article	IF	CITATIONS
1	Structure, bioactivity and applications of natural hyperbranched polysaccharides. Carbohydrate Polymers, 2019, 223, 115076.	10.2	70
2	Enhanced production of pigments by addition of surfactants in submerged fermentation of <scp><i>Monascus purpureus</i> H1102</scp> . Journal of the Science of Food and Agriculture, 2013, 93, 3339-3344.	3.5	62
3	Enhanced production of natural yellow pigments from Monascus purpureus by liquid culture: The relationship between fermentation conditions and mycelial morphology. Journal of Bioscience and Bioengineering, 2017, 124, 452-458.	2.2	61
4	A mechanistic study of the enhancing effect of Tween 80 on the mycelial growth and exopolysaccharide production by Pleurotus tuber-regium. Bioresource Technology, 2011, 102, 8323-8326.	9.6	53
5	Use of Stimulatory Agents To Enhance the Production of Bioactive Exopolysaccharide from <i>Pleurotus tuber-regium</i> by Submerged Fermentation. Journal of Agricultural and Food Chemistry, 2011, 59, 1210-1216.	5.2	49
6	Immobilization of Alkaline Protease on Amino-Functionalized Magnetic Nanoparticles and Its Efficient Use for Preparation of Oat Polypeptides. Industrial & Engineering Chemistry Research, 2015, 54, 4689-4698.	3.7	48
7	Cell wall structure of mushroom sclerotium (Pleurotus tuber-regium): Part 2. Fine structure of a novel alkali-soluble hyper-branched cell wall polysaccharide. Food Hydrocolloids, 2014, 38, 48-55.	10.7	46
8	Production of bioactive metabolites by submerged fermentation of the medicinal mushroom <i>Antrodia cinnamomea</i> : recent advances and future development. Critical Reviews in Biotechnology, 2019, 39, 541-554.	9.0	42
9	Efficient Biosynthesis of Natural Yellow Pigments by <i>Monascus purpureus</i> in a Novel Integrated Fermentation System. Journal of Agricultural and Food Chemistry, 2018, 66, 918-925.	5.2	40
10	Using millet as substrate for efficient production of monacolin K by solid-state fermentation of Monascus ruber. Journal of Bioscience and Bioengineering, 2018, 125, 333-338.	2.2	39
11	Comparative Proteomic Analysis of Mushroom Cell Wall Proteins among the Different Developmental Stages of <i>Pleurotus tuber-regium</i> . Journal of Agricultural and Food Chemistry, 2012, 60, 6173-6182.	5.2	37
12	Polydopamine nanocoated whole-cell asymmetric biocatalysts. Chemical Communications, 2017, 53, 6617-6620.	4.1	37
13	Using a water-immiscible ionic liquid to improve asymmetric reduction of 4-(trimethylsilyl)-3-butyn-2-one catalyzed by immobilized Candida parapsilosis CCTCC M203011 cells. BMC Biotechnology, 2009, 9, 90.	3.3	33
14	Why solid-state fermentation is more advantageous over submerged fermentation for converting high concentration of glycerol into Monacolin K by Monascus purpureus 9901: A mechanistic study. Journal of Biotechnology, 2015, 206, 60-65.	3.8	33
15	Current Advances on the Structure, Bioactivity, Synthesis, and Metabolic Regulation of Novel Ubiquinone Derivatives in the Edible and Medicinal Mushroom <i>Antrodia cinnamomea</i> . Journal of Agricultural and Food Chemistry, 2017, 65, 10395-10405.	5.2	31
16	Robust and Biocompatible Hybrid Matrix with Controllable Permeability for Microalgae Encapsulation. ACS Applied Materials & Interfaces, 2016, 8, 8939-8946.	8.0	25
17	Enhanced production of <scp>M</scp> onacolin <scp>K</scp> by addition of precursors and surfactants in submerged fermentation of <i>Monascus purpureus</i> 9901. Biotechnology and Applied Biochemistry, 2014, 61, 202-207.	3.1	24
18	Efficient conversion of high concentration of glycerol to Monacolin K by solid-state fermentation of Monascus purpureus using bagasse as carrier. Bioprocess and Biosystems Engineering, 2013, 36, 293-299.	3.4	23

BO-BO ZHANG

#	Article	IF	CITATIONS
19	Coupling use of surfactant and in situ extractant for enhanced production of Antrodin C by submerged fermentation of Antrodia camphorata. Biochemical Engineering Journal, 2013, 79, 194-199.	3.6	23
20	Single-cell yolk-shell nanoencapsulation for long-term viability with size-dependent permeability and molecular recognition. National Science Review, 2021, 8, nwaa097.	9.5	23
21	Evaluating the effects of microparticle addition on mycelial morphology, natural yellow pigments productivity, and key genes regulation in submerged fermentation of <i>Monascus purpureus</i> . Biotechnology and Bioengineering, 2021, 118, 2503-2513.	3.3	23
22	Efficient synthesis of enantiopure (S)-4-(trimethylsilyl)-3-butyn-2-ol via asymmetric reduction of 4-(trimethylsilyl)-3-butyn-2-one with immobilized Candida parapsilosis CCTCC M203011 cells. Journal of Molecular Catalysis B: Enzymatic, 2008, 54, 122-129.	1.8	21
23	Efficient anti-Prelog enantioselective reduction of acetyltrimethylsilane to (R)-1-trimethylsilylethanol by immobilized Candida parapsilosis CCTCC M203011 cells in ionic liquid-based biphasic systems. Microbial Cell Factories, 2012, 11, 108.	4.0	19
24	Proteomic insights into the stimulatory effect of Tween 80 on mycelial growth and exopolysaccharide production of an edible mushroom Pleurotus tuber-regium. Biotechnology Letters, 2012, 34, 1863-1867.	2.2	18
25	Enabling the biosynthesis of Antroquinonol in submerged fermentation of Antrodia camphorata. Biochemical Engineering Journal, 2014, 91, 157-162.	3.6	17
26	Ethanol addition elevates cell respiratory activity and causes overproduction of natural yellow pigments in submerged fermentation of Monascus purpureus. LWT - Food Science and Technology, 2021, 139, 110534.	5.2	17
27	A mechanistic study on the biosynthetic regulation of bioactive metabolite Antroquinonol from edible and medicinal mushroom Antrodia camphorata. Journal of Functional Foods, 2016, 25, 70-79.	3.4	16
28	Use of agar as carrier in solid-state fermentation for Monacolin K production by Monascus: A novel method for direct determination of biomass and accurate comparison with submerged fermentation. Biochemical Engineering Journal, 2013, 80, 10-13.	3.6	9
29	Structural and thermal analysis of a hyper-branched exopolysaccharide produced by submerged fermentation of mushroom mycelium. RSC Advances, 2016, 6, 112260-112268.	3.6	9
30	Stimulating the biosynthesis of antroquinonol by addition of effectors and soybean oil in submerged fermentation of <i>Antrodia camphorata</i> . Biotechnology and Applied Biochemistry, 2016, 63, 398-406.	3.1	9
31	Unsaturated fatty acid promotes the production of triterpenoids in submerged fermentation of Sanghuangporus baumii. Food Bioscience, 2020, 37, 100712.	4.4	9
32	Induction of antroquinonol production by addition of hydrogen peroxide in the fermentation of Antrodia camphorataS-29. Journal of the Science of Food and Agriculture, 2017, 97, 595-599.	3.5	8
33	Oxidative Stress Induction Is a Rational Strategy to Enhance the Productivity of <i>Antrodia cinnamomea</i> Fermentations for the Antioxidant Secondary Metabolite Antrodin C. Journal of Agricultural and Food Chemistry, 2020, 68, 3995-4004.	5.2	8
34	Integrated strategy of pH-shift and glucose feeding for enhanced production of bioactive Antrodin C in submerged fermentation of <i>Antrodia camphorata</i> . Journal of Industrial Microbiology and Biotechnology, 2014, 41, 1305-1310.	3.0	7
35	Two-Dimensional Gel Electrophoresis Analysis of Mycelial Cells Treated with Tween 80: Differentially Expressed Protein Related to Enhanced Metabolite Production. Journal of Agricultural and Food Chemistry, 2012, 60, 10585-10591.	5.2	6
36	Efficient Asymmetric Reduction of 4-(Trimethylsilyl)-3-Butyn-2-One by Candida parapsilosis Cells in an Ionic Liquid-Containing System. PLoS ONE, 2012, 7, e37641.	2.5	6

BO-BO ZHANG

#	Article	IF	CITATIONS
37	Chemical Composition and Safety of Unrecorded Grain Alcohol (Bai Jiu) Samples from Three Provinces in China. International Journal of Environmental Research and Public Health, 2018, 15, 2710.	2.6	6
38	Alginate@polydopamine@SiO2 microcapsules with controlled porosity for whole-cell based enantioselective biosynthesis of (S)â^1-phenylethanol. Colloids and Surfaces B: Biointerfaces, 2022, 214, 112454.	5.0	6
39	Chemical Characterization and Antioxidant Properties of Cell Wall Polysaccharides from Antrodia cinnamomea mycelia. Food Bioscience, 2021, 41, 100932.	4.4	5
40	Effect of cultural conditions on antrodin <scp>C</scp> production by basidiomycete <i><scp>A</scp>ntrodia camphorata</i> in solidâ€state fermentation. Biotechnology and Applied Biochemistry, 2014, 61, 724-732.	3.1	2