Jia Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7800532/publications.pdf Version: 2024-02-01

		361413	477307
30	1,432	20	29
papers	citations	h-index	g-index
32	32	32	2170
all docs	docs citations	times ranked	citing authors

LIA MANC

#	Article	IF	CITATIONS
1	Direct Oxidative Amination of the Methyl C–H Bond in N-Heterocycles over Metal-Free Mesoporous Carbon. ACS Catalysis, 2021, 11, 10902-10912.	11.2	11
2	Graphitic phosphorus coordinated single Fe atoms for hydrogenative transformations. Nature Communications, 2020, 11, 4074.	12.8	122
3	Mesoporous carbon with high content of graphitic nitrogen for selective oxidation of ethylbenzene. RSC Advances, 2019, 9, 28253-28257.	3.6	4
4	Phosphorus oxide clusters stabilized by carbon nanotubes for selective isomerization and dehydrogenation of Î ² -isopentene. Catalysis Science and Technology, 2018, 8, 1522-1527.	4.1	11
5	Few-layer sp2 carbon supported on Al2O3 as hybrid structure for ethylbenzene oxidative dehydrogenation. Catalysis Today, 2018, 301, 32-37.	4.4	9
6	Nanodiamondâ€Coreâ€Reinforced, Grapheneâ€Shellâ€Immobilized Platinum Nanoparticles as a Highly Active Catalyst for the Lowâ€Temperature Dehydrogenation of <i>n</i> â€Butane. ChemCatChem, 2018, 10, 520-524.	3.7	15
7	Pt NPs immobilized on a N-doped graphene@Al ₂ O ₃ hybrid support as robust catalysts for low temperature CO oxidation. Chemical Communications, 2018, 54, 11168-11171.	4.1	21
8	Chemocatalytic Conversion of Cellulosic Biomass to Methyl Glycolate, Ethylene Glycol, and Ethanol. ChemSusChem, 2017, 10, 1390-1394.	6.8	73
9	Direct Insight into Ethane Oxidative Dehydrogenation over Boron Nitrides. ChemCatChem, 2017, 9, 3293-3297.	3.7	112
10	Selective Hydrogenolysis of Glycerol to 1,3â€Propanediol: Manipulating the Frustrated Lewis Pairs by Introducing Gold to Pt/WO _{<i>x</i>} . ChemSusChem, 2017, 10, 818-818.	6.8	0
11	Hydrothermal Carbon Enriched with Oxygenated Groups from Biomass Glucose as an Efficient Carbocatalyst. Angewandte Chemie - International Edition, 2017, 56, 600-604.	13.8	51
12	Hydrothermal Carbon Enriched with Oxygenated Groups from Biomass Glucose as an Efficient Carbocatalyst. Angewandte Chemie, 2017, 129, 615-619.	2.0	23
13	A Facile and Efficient Method to Fabricate Highly Selective Nanocarbon Catalysts for Oxidative Dehydrogenation. ChemSusChem, 2017, 10, 353-358.	6.8	19
14	Fabrication of MgO–rGO hybrid catalysts with a sandwich structure for enhanced ethylbenzene dehydrogenation performance. Chemical Communications, 2017, 53, 11322-11325.	4.1	21
15	Selective Hydrogenolysis of Glycerol to 1,3â€Propanediol: Manipulating the Frustrated Lewis Pairs by Introducing Gold to Pt/WO _{<i>x</i>< /sub>. ChemSusChem, 2017, 10, 819-824.}	6.8	89
16	Nitrogen-doped carbon nanotubes as bifunctional catalysts with enhanced catalytic performance for selective oxidation of ethanol. Carbon, 2017, 111, 519-528.	10.3	43
17	Hydrogenolysis of Glycerol to 1,3â€propanediol under Low Hydrogen Pressure over WO _{<i>x</i>} ‣upported Single/Pseudo‣ingle Atom Pt Catalyst. ChemSusChem, 2016, 9, 784-790.	6.8	140
18	Multiâ€Walled Carbon Nanotubes as a Catalyst for Gasâ€Phase Oxidation of Ethanol to Acetaldehyde. ChemSusChem, 2016, 9, 1820-1826.	6.8	24

Jia Wang

#	Article	IF	CITATIONS
19	Increasing fluorine concentration to control the microstructure from fullerene-like to amorphous in carbon films. RSC Advances, 2016, 6, 21719-21724.	3.6	3
20	Oxygen breaks into carbon nanotubes and abstracts hydrogen from propane. Carbon, 2016, 96, 631-640.	10.3	38
21	Facile synthesis of Pd nanoparticles encapsulated into hollow carbon nanospheres with robust catalytic performance. Catalysis Today, 2016, 260, 55-59.	4.4	30
22	Highâ€Performance Fe–Nâ€Doped Graphene Electrocatalysts with pHâ€Dependent Active Sites for the Oxygen Reduction Reaction. ChemElectroChem, 2015, 2, 2032-2040.	3.4	34
23	Facile Synthesis of Au Nanoparticles Embedded in an Ultrathin Hollow Graphene Nanoshell with Robust Catalytic Performance. Small, 2015, 11, 5059-5064.	10.0	69
24	Porous graphene-based material as an efficient metal free catalyst for the oxidative dehydrogenation of ethylbenzene to styrene. Chemical Communications, 2015, 51, 3423-3425.	4.1	51
25	Efficient and highly selective boron-doped carbon materials-catalyzed reduction of nitroarenes. Chemical Communications, 2015, 51, 13086-13089.	4.1	84
26	Size-controlled nitrogen-containing mesoporous carbon nanospheres by one-step aqueous self-assembly strategy. Journal of Materials Chemistry A, 2015, 3, 2305-2313.	10.3	149
27	Nitrobenzene reduction catalyzed by carbon: does the reaction really belong to carbocatalysis?. Catalysis Science and Technology, 2014, 4, 4183-4187.	4.1	42
28	Towards a highly dispersed and more thermally stable Ru/OCNT catalyst. Chemical Communications, 2014, 50, 3856.	4.1	11
29	Synthesis of nitrogen-containing ordered mesoporous carbon as a metal-free catalyst for selective oxidation of ethylbenzene. Chemical Communications, 2014, 50, 9182-9184.	4.1	70
30	Mesoporous Ti–W oxide: synthesis, characterization, and performance in selective hydrogenolysis of glycerol. Journal of Materials Chemistry A, 2013, 1, 3724.	10.3	63