
## Amjad M Husaini

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7800060/publications.pdf Version: 2024-02-01



AMIAD M HUSAINI

| #  | Article                                                                                                                                                                                              | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Overexpression of the HMGâ€CoA Reductase Gene Leads to Enhanced Artemisinin Biosynthesis in<br>Transgenic <i>Artemisia annua</i> Plants. Planta Medica, 2009, 75, 1453-1458.                         | 1.3 | 91        |
| 2  | Development of transgenic strawberry (Fragaria x ananassa Duch.) plants tolerant to salt stress.<br>Plant Science, 2008, 174, 446-455.                                                               | 3.6 | 83        |
| 3  | Host–Pathogen Interaction in <i>Fusarium oxysporum</i> Infections: Where Do We Stand?. Molecular<br>Plant-Microbe Interactions, 2018, 31, 889-898.                                                   | 2.6 | 63        |
| 4  | Variation of essential oil of Mentha haplocalyx Briq. and Mentha spicata L. from China. Industrial<br>Crops and Products, 2013, 42, 251-260.                                                         | 5.2 | 44        |
| 5  | Challenges of climate change. GM Crops and Food, 2014, 5, 97-105.                                                                                                                                    | 3.8 | 41        |
| 6  | Pre- and post-agroinfection strategies for efficient leaf disk transformation and regeneration of transgenic strawberry plants. Plant Cell Reports, 2010, 29, 97-110.                                | 5.6 | 34        |
| 7  | Optimization of potassium for proper growth and physiological response of Houttuynia cordata<br>Thunb Environmental and Experimental Botany, 2011, 71, 292-297.                                      | 4.2 | 34        |
| 8  | Biotech crops. GM Crops and Food, 2013, 4, 1-9.                                                                                                                                                      | 3.8 | 31        |
| 9  | In vitro cormlet production of saffron (Crocus sativus L. Kashmirianus) and their flowering response under greenhouse. GM Crops and Food, 2012, 3, 289-295.                                          | 3.8 | 29        |
| 10 | Saffron: A potential drug-supplement for severe acute respiratory syndrome coronavirus (COVID)<br>management. Heliyon, 2021, 7, e07068.                                                              | 3.2 | 27        |
| 11 | Interactive effect of light, temperature and TDZ on the regeneration potential of leaf discs of<br>Fragaria x ananassa Duch. In Vitro Cellular and Developmental Biology - Plant, 2007, 43, 576-584. | 2.1 | 24        |
| 12 | High-value pleiotropic genes for developing multiple stress-tolerant biofortified crops for 21st-century challenges. Heredity, 2022, 128, 460-472.                                                   | 2.6 | 22        |
| 13 | Vehicles and ways for efficient nuclear transformation in plants. GM Crops, 2010, 1, 276-287.                                                                                                        | 1.9 | 20        |
| 14 | SSR based genetic diversity of pigmented and aromatic rice (Oryza sativa L.) genotypes of the western<br>Himalayan region of India. Physiology and Molecular Biology of Plants, 2016, 22, 547-555.   | 3.1 | 20        |
| 15 | Multiplex Fluorescent, Activity-Based Protein Profiling Identifies Active α-Glycosidases and Other<br>Hydrolases in Plants. Plant Physiology, 2018, 177, 24-37.                                      | 4.8 | 20        |
| 16 | An Expensive Spice Saffron (Crocus sativus L.): A Case Study from Kashmir, Iran, and Turkey. , 2018, ,<br>109-149.                                                                                   |     | 20        |
| 17 | Approaches for gene targeting and targeted gene expression in plants. GM Crops, 2011, 2, 150-162.                                                                                                    | 1.9 | 16        |
| 18 | Role of Osmotin in Strawberry Improvement. Plant Molecular Biology Reporter, 2012, 30, 1055-1064.                                                                                                    | 1.8 | 13        |

Amjad M Husaini

| #  | Article                                                                                                                                                                                                                                                          | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Time to Redefine Organic Agriculture: Can't GM Crops Be Certified as Organics?. Frontiers in Plant<br>Science, 2018, 9, 423.                                                                                                                                     | 3.6 | 13        |
| 20 | Differential Bioaccumulation of Select Heavy Metals from Wastewater by Lemna minor. Bulletin of Environmental Contamination and Toxicology, 2020, 105, 777-783.                                                                                                  | 2.7 | 12        |
| 21 | Understanding saffron biology using omics- and bioinformatics tools: stepping towards a better<br>Crocus phenome. Molecular Biology Reports, 2022, 49, 5325-5340.                                                                                                | 2.3 | 10        |
| 22 | Prospects of organic saffron kitchen gardens as a source of phytochemicals for boosting immunity in<br>common households of semi-arid regions: A case study of trans-Himalayan Kashmir valley. Journal of<br>Pharmacognosy and Phytochemistry, 2020, 9, 237-243. | 0.4 | 4         |
| 23 | Temporal expression of floral proteins interacting with CArG1 region of CsAP3 gene in Crocus sativus<br>L Gene Reports, 2019, 16, 100446.                                                                                                                        | 0.8 | 3         |
| 24 | Rice Biodiversity in Cold Hill Zones of Kashmir Himalayas and Conservation of Its Landraces. , 0, , .                                                                                                                                                            |     | 2         |
| 25 | Organic GMOs: Combining Ancient Wisdom with Modern Biotechnology. , 2021, , 323-328.                                                                                                                                                                             |     | 2         |
| 26 | <i>In vitro</i> propagation of chinar ( <i>Platanus orientalis</i> L.) using node and internode explants. Applied Biological Research, 2017, 19, 197.                                                                                                            | 0.2 | 1         |
| 27 | Cold stress and the role of signalling hormones: A preliminary study on cold-tolerant high-altitude<br>Himalayan rice genotypes. The Pharma Innovation, 2021, 10, 692-699.                                                                                       | 0.3 | 1         |
| 28 | Assessment of spatial variation in water quality of Doodhganga stream in Kashmir Himalaya.<br>International Journal of Chemical Studies, 2020, 8, 1075-1081.                                                                                                     | 0.1 | 1         |
| 29 | Improving Plant Growth and Quality of Plant-Products: An Interplay of Plant-microbe Interaction.<br>International Journal of Current Microbiology and Applied Sciences, 2020, 9, 3759-3766.                                                                      | 0.1 | 1         |
| 30 | Nanotechnology and Robotics: The Twin Drivers of Agriculture in Future. , 2021, , 553-571.                                                                                                                                                                       |     | 1         |
| 31 | Marker Validation and Sequencing in Aromatic Landrace Mushk Budji. Current Science, 2020, 118, 625.                                                                                                                                                              | 0.8 | Ο         |