Robert Jg Mortimer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7799862/publications.pdf

Version: 2024-02-01

76 papers 3,214 citations

126858 33 h-index 55 g-index

76 all docs

76 docs citations

76 times ranked 3865 citing authors

#	Article	IF	CITATIONS
1	Utilization of coal fly ash waste for effective recapture of phosphorus from waters. Chemosphere, 2022, 287, 132431.	4.2	16
2	Hydrothermal carbonization of microalgae for phosphorus recycling from wastewater to crop-soil systems as slow-release fertilizers. Journal of Cleaner Production, 2021, 283, 124627.	4.6	33
3	Efficient arsenic removal by a bifunctional heterogeneous catalyst through simultaneous hydrogen peroxide (H2O2) catalytic oxidation and adsorption. Journal of Cleaner Production, 2021, 325, 129329.	4.6	15
4	Investigating the potential of sunflower species, fermented palm wine and Pleurotus ostreatus for treatment of petroleum-contaminated soil. Chemosphere, 2020, 240, 124881.	4.2	17
5	Mycoremediation of petroleum contaminated soils: progress, prospects and perspectives. Environmental Sciences: Processes and Impacts, 2019, 21, 1446-1458.	1.7	20
6	Nanobubble Technology in Environmental Engineering: Revolutionization Potential and Challenges. Environmental Science & Environmental Engineering: Revolutionization Potential and Challenges.	4.6	67
7	Comment on "A Pilot-Scale Field Study: In Situ Treatment of PCB-Impacted Sediments with Bioamended Activated Carbon― Environmental Science & Envi	4.6	O
8	Cryogenic circulation for indoor air pollution control. Science of the Total Environment, 2019, 651, 1451-1456.	3.9	8
9	Reoxidation of estuarine sediments during simulated resuspension events: Effects on nutrient and trace metal mobilisation. Estuarine, Coastal and Shelf Science, 2018, 207, 40-55.	0.9	17
10	Comment: Closing phosphorus cycle from natural waters: re-capturing phosphorus through an integrated water-energy-food strategy. Journal of Environmental Sciences, 2018, 65, 375-376.	3.2	22
11	Evaluating water quality and ecotoxicology assessment techniques using data from a lead and zinc effected upland limestone catchment. Water Research, 2018, 128, 49-60.	5.3	7
12	The Effect of Atmospheric Acid Processing on the Global Deposition of Bioavailable Phosphorus From Dust. Global Biogeochemical Cycles, 2018, 32, 1367-1385.	1.9	21
13	Leaching behaviour of co-disposed steel making wastes: Effects of aeration on leachate chemistry and vanadium mobilisation. Waste Management, 2018, 81, 1-10.	3.7	13
14	Behaviour and fate of vanadium during the aerobic neutralisation of hyperalkaline slag leachate. Science of the Total Environment, 2018, 643, 1191-1199.	3.9	21
15	Diversity patterns of benthic bacterial communities along the salinity continuum of the Humber estuary (UK). Aquatic Microbial Ecology, 2018, 81, 277-291.	0.9	14
16	Enhanced Phosphorus Locking by Novel Lanthanum/Aluminum–Hydroxide Composite: Implications for Eutrophication Control. Environmental Science & Eutrophication Control. Environmental Eutrophication Control. Environmental Eutrophication Control Environmental Eutrophication Control	4.6	200
17	Habitat use by the endangered white-clawed crayfish <i>Austropotamobius</i> species complex: a systematic review. Knowledge and Management of Aquatic Ecosystems, 2017, , 4.	0.5	7
18	Mechanism of Vanadium Leaching during Surface Weathering of Basic Oxygen Furnace Steel Slag Blocks: A Microfocus X-ray Absorption Spectroscopy and Electron Microscopy Study. Environmental Science & Echnology, 2017, 51, 7823-7830.	4.6	50

#	Article	IF	CITATIONS
19	Understanding the mobilisation of metal pollution associated with historical mining in a carboniferous upland catchment. Environmental Sciences: Processes and Impacts, 2017, 19, 1061-1074.	1.7	5
20	Identification and Quantification of Nitrogen in a Reservoir, Jiaodong Peninsula, China. Water Environment Research, 2017, 89, 369-377.	1.3	5
21	Effect of episodic rainfall on aqueous metal mobility from historical mine sites. Environmental Chemistry, 2017, 14, 469.	0.7	9
22	Understanding the nature of atmospheric acid processing of mineral dusts in supplying bioavailable phosphorus to the oceans. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 14639-14644.	3.3	68
23	Use of bauxite residue (red mud) as a low cost sorbent for sulfide removal in polluted water remediation. Water Science and Technology, 2016, 74, 359-366.	1.2	3
24	Influence of salinity on COD measurements in coastal water management. Desalination and Water Treatment, 2016, 57, 18338-18345.	1.0	14
25	Feeding behaviour, predatory functional responses and trophic interactions of the invasive Chinese mitten crab (<i>Eriocheir sinensis</i>) and signal crayfish (<i>Pacifastacus leniusculus</i>). Freshwater Biology, 2016, 61, 426-443.	1.2	33
26	Dynamic characteristics of sulfur, iron and phosphorus in coastal polluted sediments, north China. Environmental Pollution, 2016, 219, 588-595.	3.7	43
27	Effect of Ocean Acidification on Organic and Inorganic Speciation of Trace Metals. Environmental Science & Environmental Scien	4.6	92
28	Geochemistry of reduced inorganic sulfur, reactive iron, and organic carbon in fluvial and marine surface sediment in the Laizhou Bay region, China. Environmental Earth Sciences, 2015, 74, 1151-1160.	1.3	23
29	Leaching of copper and nickel in soil-water systems contaminated by bauxite residue (red mud) from Ajka, Hungary: the importance of soil organic matter. Environmental Science and Pollution Research, 2015, 22, 10800-10810.	2.7	44
30	Reduced inorganic sulfur in surface sediment and its impact on benthic environments in offshore areas of NE China. Environmental Sciences: Processes and Impacts, 2015, 17, 1689-1697.	1.7	7
31	Mobilisation of arsenic from bauxite residue (red mud) affected soils: Effect of pH and redox conditions. Applied Geochemistry, 2014, 51, 268-277.	1.4	50
32	Bacterially mediated removal of phosphorus and cycling of nitrate and sulfate in the waste stream of a "zero-discharge―recirculating mariculture system. Water Research, 2014, 56, 109-121.	5.3	27
33	Gypsum addition to soils contaminated by red mud: implications for aluminium, arsenic, molybdenum and vanadium solubility. Environmental Geochemistry and Health, 2013, 35, 643-656.	1.8	51
34	Enhancing microbial iron reduction in hyperalkaline, chromium contaminated sediments by pH amendment. Applied Geochemistry, 2013, 28, 135-144.	1.4	18
35	Impact of Suspended Inorganic Particles on Phosphorus Cycling in the Yellow River (China). Environmental Science & Environmental Science & Environment	4.6	99
36	A combined application of different engineering and biological techniques to remediate a heavily polluted river. Ecological Engineering, 2013, 57, 1-7.	1.6	90

#	Article	IF	Citations
37	Behavior of Aluminum, Arsenic, and Vanadium during the Neutralization of Red Mud Leachate by HCl, Gypsum, or Seawater. Environmental Science & Environ	4.6	115
38	Effect of pH on growth and survival in the freshwater crayfish <i>Austropotamobius pallipes</i> Freshwater Crayfish, 2013, 19, 53-62.	0.5	6
39	Branchiobdellidan infestation on endangered white-clawed crayfish (<i>Austropotamobius) Tj ETQq1 1 0.784314</i>	1 rgBT /Ov	erlock 10 TF
40	Horizontal transmission of <i>Thelohania contejeani</i> in the endangered white-clawed (<i>Austropotamobius pallipes</i>) and the invasive signal crayfish (<i>Pacifastacus leniusculus</i>). Parasitology, 2012, 139, 1471-1477.	0.7	5
41	Reactivity of pyrite and organic carbon as electron donors for biogeochemical processes in the fractured Jurassic Lincolnshire limestone aquifer, UK. Chemical Geology, 2012, 332-333, 26-31.	1.4	9
42	Biogeochemical Reduction Processes in a Hyper-Alkaline Leachate Affected Soil Profile. Geomicrobiology Journal, 2012, 29, 769-779.	1.0	26
43	Studies on synthesis and characteristics of zeolite prepared from Indian fly ash. Environmental Technology (United Kingdom), 2012, 33, 37-50.	1.2	11
44	Morphological diversity and phenotypic plasticity in the threatened British whiteâ€elawed crayfish ⟨i⟩ (Austropotamobius pallipes)⟨/i⟩. Aquatic Conservation: Marine and Freshwater Ecosystems, 2012, 22, 220-231.	0.9	19
45	Predatory Functional Response and Prey Choice Identify Predation Differences between Native/Invasive and Parasitised/Unparasitised Crayfish. PLoS ONE, 2012, 7, e32229.	1.1	94
46	Effect of Microbially Induced Anoxia on Cr(VI) Mobility at a Site Contaminated with Hyperalkaline Residue from Chromite Ore Processing. Geomicrobiology Journal, 2011, 28, 68-82.	1.0	16
47	Experimental evidence for rapid biotic and abiotic reduction of Fe (III) at low temperatures in salt marsh sediments: a possible mechanism for formation of modern sedimentary siderite concretions. Sedimentology, 2011, 58, 1514-1529.	1.6	37
48	Chromate reduction in Fe(II)-containing soil affected by hyperalkaline leachate from chromite ore processing residue. Journal of Hazardous Materials, 2011, 194, 15-23.	6.5	50
49	Internal loading of phosphorus in a sedimentation pond of a treatment wetland: Effect of a phytoplankton crash. Science of the Total Environment, 2011, 409, 2222-2232.	3.9	67
50	Response to Letter to the Editor "Aerobic phosphorus release from shallow lake sediments― Science of the Total Environment, 2011, 409, 4642-4643.	3.9	0
51	Impact of Point-Source Pollution on Phosphorus and Nitrogen Cycling in Stream-Bed Sediments. Environmental Science & December 2010, 44, 908-914.	4.6	65
52	Concentrations, sulfur isotopic compositions and origin of organosulfur compounds in pore waters of a highly polluted raised peatland. Organic Geochemistry, 2010, 41, 55-62.	0.9	30
53	Sulphur cycling in organicâ€rich marine sediments from a Scottish fjord. Sedimentology, 2009, 56, 1159-1173.	1.6	47
54	Stream-bed phosphorus in paired catchments with different agricultural land use intensity. Agriculture, Ecosystems and Environment, 2009, 134, 53-66.	2.5	69

#	Article	IF	Citations
55	Wetland system for primary treatment of landfill leachate. Proceedings of Institution of Civil Engineers: Waste and Resource Management, 2009, 162, 75-83.	0.9	2
56	Measurement of soluble reactive phosphorus concentration profiles and fluxes in river-bed sediments using DET gel probes. Journal of Hydrology, 2008, 350, 261-273.	2.3	59
57	Phosphorus dynamics and productivity in a sewage-impacted lowland chalk stream. Journal of Hydrology, 2008, 351, 87-97.	2.3	55
58	Anoxic nitrification: Evidence from Humber Estuary sediments (UK). Chemical Geology, 2008, 250, 29-39.	1.4	53
59	Stimulation of Microbially Mediated Chromate Reduction in Alkaline Soil-Water Systems. Geomicrobiology Journal, 2007, 24, 655-669.	1.0	35
60	Insights into redox cycling of sulfur and iron in peatlands using high-resolution diffusive equilibrium thin film (DET) gel probe sampling. Chemical Geology, 2007, 244, 409-420.	1.4	22
61	The biogeochemistry of a manganese-rich Scottish sea loch: Implications for the study of anoxic nitrification. Continental Shelf Research, 2007, 27, 1501-1509.	0.9	19
62	The biogeochemical behaviour of U(VI) in the simulated near-field of a low-level radioactive waste repository. Applied Geochemistry, 2006, 21 , $1539-1550$.	1.4	12
63	Reoxidation Behavior of Technetium, Iron, and Sulfur in Estuarine Sediments. Environmental Science & E	4.6	95
64	Effects of Progressive Anoxia on the Solubility of Technetium in Sediments. Environmental Science & En	4.6	100
65	Chapter 3 The role of microorganisms during sediment diagenesis: Implications for radionuclide mobility. Radioactivity in the Environment, 2002, , 61-100.	0.2	8
66	Determination of Nitrate in Small Water Samples (100 $\hat{A}\mu L$) by the Cadmium-Copper Reduction Method: A Manual Technique with Application to the Interstitial Waters of Marine Sediments. International Journal of Environmental Analytical Chemistry, 2002, 82, 369-376.	1.8	23
67	Localised remobilization of metals in a marine sediment. Science of the Total Environment, 2002, 296, 175-187.	3.9	129
68	Metal Speciation (Cu, Zn, Pb, Cd) and Organic Matter in Oxic to Suboxic Salt Marsh Sediments, Severn Estuary, Southwest Britain. Marine Pollution Bulletin, 2000, 40, 377-386.	2.3	44
69	Atmospheric input of nitrogen and phosphorus to the Southeast Mediterranean: Sources, fluxes, and possible impact. Limnology and Oceanography, 1999, 44, 1683-1692.	1.6	209
70	The Effect of Macrofauna on Porewater Profiles and Nutrient Fluxes in the Intertidal Zone of the Humber Estuary. Estuarine, Coastal and Shelf Science, 1999, 48, 683-699.	0.9	116
71	Sediment–Water Exchange of Nutrients in the Intertidal Zone of the Humber Estuary, UK. Marine Pollution Bulletin, 1999, 37, 261-279.	2.3	68
72	Use of a highâ€resolution poreâ€water gel profiler to measure groundwater fluxes at an underwater saline seepage site in Lake Kinneret, Israel. Limnology and Oceanography, 1999, 44, 1802-1809.	1.6	16

#	Article	IF	CITATIONS
73	Use of gel probes for the determination of high resolution solute distributions in marine and estuarine pore waters. Marine Chemistry, 1998, 63, 119-129.	0.9	49
74	Microbial influence on the oxygen isotopic composition of diagenetic siderite. Geochimica Et Cosmochimica Acta, 1997, 61, 1705-1711.	1.6	116
75	Effect of bacteria on the elemental composition of early diagenetic siderite: implications for palaeoenvironmental interpretations. Sedimentology, 1997, 44, 759-765.	1.6	74
76	Simultaneous nitrification and denitrification using a novel up-flow bio-electrochemical reactor., 0, 158, 97-104.		0