
Vicente Navarro

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/779985/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Reply to Janssen, H. Comment on "Cabrera et al. A User-Friendly Tool to Characterize the Moisture Transfer in Porous Building Materials: FLoW1D. Appl. Sci. 2020, 10, 5090― Applied Sciences (Switzerland), 2022, 12, 1124.	1.3	0
2	Density of water adsorbed on bentonites: Determination and effect on microstructural void ratio modelling. Applied Clay Science, 2022, 219, 106434.	2.6	8
3	Enhancing soil vapor extraction with EKSF for the removal of HCHs. Chemosphere, 2022, 296, 134052.	4.2	9
4	A new double-porosity macroscopic model of bentonite free swelling. Engineering Geology, 2022, 305, 106725.	2.9	7
5	Salt crystallization dynamics in indoor environments: Stone weathering in the Muñoz Chapel of the Cathedral of Santa MarÃa (Cuenca, central Spain). Journal of Cultural Heritage, 2021, 47, 123-132.	1.5	12
6	Determination of the hygric properties of the heritage stone of the Cathedral of Cuenca through the water absorption by capillarity test. Journal of Cultural Heritage, 2021, 48, 186-195.	1.5	6
7	Molecular dynamics data for modelling the microstructural behaviour of compacted sodium bentonites. Applied Clay Science, 2021, 201, 105932.	2.6	7
8	Conceptual and Mathematical Modeling of the Transport of Pollutants in Soil byÂElectric Fields. Environmental Pollution, 2021, , 59-85.	0.4	0
9	A worksheet-based tool to implement reactive transport models in COMSOL Multiphysics. Chemosphere, 2021, 266, 129176.	4.2	3
10	A water retention model accounting for void ratio changes in double porosity clays. Acta Geotechnica, 2021, 16, 2775-2790.	2.9	16
11	Temperature effect on gypsum-bearing soil and supported (building) foundations: The case of the Central Storage Facility of Villar de CaA±as, Spain. Engineering Geology, 2021, 284, 106049.	2.9	3
12	Numerical model of free swelling processes in compacted MX-80 bentonites. International Journal of Rock Mechanics and Minings Sciences, 2021, 141, 104713.	2.6	8
13	Assessment of temperature effect on bentonite microstructure deformability. Applied Clay Science, 2021, 210, 106156.	2.6	5
14	Scale-up of electrokinetic permeable reactive barriers for the removal of organochlorine herbicide from spiked soils. Journal of Hazardous Materials, 2021, 417, 126078.	6.5	15
15	Coupling of chemical and hydromechanical properties in bentonite: A new reactive transport model. Applied Clay Science, 2021, 214, 106274.	2.6	2
16	Modeling the behavior of compacted bentonites under low porosity conditions. Engineering Geology, 2021, 293, 106333.	2.9	3
17	Physicochemical and Hydrodynamic Aspects of Soil. Environmental Pollution, 2021, , 3-27.	0.4	0
18	Sensitivity of bentonite swelling to pore water activity. Environmental Geotechnics, 2020, 7, 32-41.	1.3	2

#	Article	IF	CITATIONS
19	Testing different strategies for the remediation of soils polluted with lindane. Chemical Engineering Journal, 2020, 381, 122674.	6.6	25
20	Long-term monitoring of the distribution of a building's settlements: Sectorization and study of the underlying factors. Engineering Structures, 2020, 205, 110111.	2.6	5
21	Atmosphere-soil-structure interaction: Isolated building foundation movements induced by environmental loads. Computers and Geotechnics, 2020, 119, 103356.	2.3	2
22	A triple porosity hydro-mechanical model for MX-80 bentonite pellet mixtures. Engineering Geology, 2020, 265, 105311.	2.9	14
23	M4EKR, Multiphysics for ElectroKinetic Remediation of Polluted Soils. E3S Web of Conferences, 2020, 195, 02003.	0.2	3
24	Development of a THMC code for bentonites in COMSOL Multiphysics. E3S Web of Conferences, 2020, 195, 04002.	0.2	0
25	A User-Friendly Tool to Characterize the Moisture Transfer in Porous Building Materials: FLoW1D. Applied Sciences (Switzerland), 2020, 10, 5090.	1.3	7
26	From double to triple porosity modelling of bentonite pellet mixtures. Engineering Geology, 2020, 274, 105714.	2.9	15
27	A functional structure for state functions of moisture transfer in heritage building elements. Journal of Building Engineering, 2020, 29, 101201.	1.6	10
28	Electrokinetic-Fenton for the remediation low hydraulic conductivity soil contaminated with petroleum. Chemosphere, 2020, 248, 126029.	4.2	41
29	Donnan-ion hydration model to estimate the electroosmotic permeability of clays. Electrochimica Acta, 2020, 355, 136758.	2.6	15
30	A numerical inspection on the squeezing test in active clays. Geotechnique, 2019, 69, 329-343.	2.2	3
31	Disturbance of a natural hydrogeochemical system caused by the construction of a high-level radioactive waste facility: The case study of the central storage facility at Villar de CaA±as, Spain. Advances in Water Resources, 2019, 127, 264-279.	1.7	2
32	Development of a multiphysics numerical solver for modeling the behavior of clay-based engineered barriers. Nuclear Engineering and Technology, 2019, 51, 1047-1059.	1.1	14
33	Calcite buffer effects in electrokinetic remediation of clopyralid-polluted soils. Separation and Purification Technology, 2019, 212, 376-387.	3.9	30
34	Characterisation of the water content distribution beneath building foundations. Measurement: Journal of the International Measurement Confederation, 2019, 136, 82-92.	2.5	5
35	Techno-economic analysis of the scale-up process of electrochemically-assisted soil remediation. Journal of Environmental Management, 2019, 231, 570-575.	3.8	19
36	Functional behaviour of chimney structures in tufa lakes. Journal of Iberian Geology, 2018, 44, 193-205.	0.7	0

#	Article	IF	CITATIONS
37	Enhanced electrokinetic remediation of polluted soils by anolyte pH conditioning. Chemosphere, 2018, 199, 477-485.	4.2	46
38	Modelling the hydro-mechanical behaviour of GMZ bentonite. Engineering Geology, 2018, 239, 195-205.	2.9	9
39	Are electrochemical fences effective in the retention of pollution?. Separation and Purification Technology, 2018, 201, 19-24.	3.9	5
40	Water transport in electrokinetic remediation of unsaturated kaolinite. Experimental and numerical study. Separation and Purification Technology, 2018, 192, 196-204.	3.9	31
41	Electro-bioremediation at the prototype scale: What it should be learned for the scale-up. Chemical Engineering Journal, 2018, 334, 2030-2038.	6.6	33
42	A microstructural effective stress definition for compacted active clays. Geomechanics for Energy and the Environment, 2018, 15, 47-53.	1.2	27
43	Intra-aggregate water content and void ratio model for MX-80 bentonites. Engineering Geology, 2018, 246, 131-138.	2.9	16
44	ZVI – Reactive barriers for the remediation of soils polluted with clopyralid: Are they really Worth?. Chemical Engineering Journal, 2018, 350, 100-107.	6.6	30
45	Salinity effects on the erosion behaviour of MX-80 bentonite: A modelling approach. Applied Clay Science, 2018, 161, 494-504.	2.6	6
46	Modelling of compacted bentonite swelling accounting for salinity effects. Engineering Geology, 2017, 223, 48-58.	2.9	56
47	A simple procedure to simulate a smooth elastic-plastic transition in Cam-Clay models. Computers and Geotechnics, 2017, 90, 27-33.	2.3	2
48	Comparison of the hydrogeochemical and mechanical behaviours of compacted bentonite using different conceptual approaches. Applied Clay Science, 2017, 141, 280-291.	2.6	14
49	Multiphysics Implementation of Electrokinetic Remediation Models for Natural Soils and Porewaters. Electrochimica Acta, 2017, 225, 93-104.	2.6	58
50	Predicting the swelling pressure of MX-80 bentonite. Applied Clay Science, 2017, 149, 51-58.	2.6	27
51	Effect of polarity reversal on the enhanced electrokinetic remediation of 2,4-D-polluted soils: A numerical study. Electrochimica Acta, 2017, 258, 414-422.	2.6	21
52	A simple procedure to improve the explicit integration of Cam-Clay models. Computers and Geotechnics, 2017, 81, 207-211.	2.3	6
53	Scale-up of the electrokinetic fence technology for the removal of pesticides. Part I: Some notes about the transport of inorganic species. Chemosphere, 2017, 166, 540-548.	4.2	44
54	Scale-up of the electrokinetic fence technology for the removal of pesticides. Part II: Does size matter for removal of herbicides?. Chemosphere, 2017, 166, 549-555.	4.2	53

#	Article	IF	CITATIONS
55	EDUCATIONAL UTILITY OF SOFTWARE DEVELOPMENT IN ENGINEERING TEACHING. THE EXAMPLE OF AN UNSATURATED SOIL WATER FLOW CODE. INTED Proceedings, 2017, , .	0.0	Ο
56	Removal of oxyfluorfen from spiked soils using electrokinetic soil flushing with the surrounding arrangements of electrodes. Science of the Total Environment, 2016, 559, 94-102.	3.9	25
57	Removal of oxyfluorfen from spiked soils using electrokinetic fences. Separation and Purification Technology, 2016, 167, 55-62.	3.9	20
58	Removal of oxyfluorfen from spiked soils using electrokinetic soil flushing with linear rows of electrodes. Chemical Engineering Journal, 2016, 294, 65-72.	6.6	32
59	Scale-up on electrokinetic remediation: Engineering and technological parameters. Journal of Hazardous Materials, 2016, 315, 135-143.	6.5	55
60	Prescale-Up of Electro-Bioremediation Processes. , 2016, , .		2
61	Electrokinetic Remediation of Soils Polluted with Pesticides: Flushing and Fence Technologies. , 2016, ,		1
62	Swelling and mechanical erosion of MX-80 bentonite: Pinhole test simulation. Engineering Geology, 2016, 202, 99-113.	2.9	19
63	Electrokinetic flushing with surrounding electrode arrangements for the remediation of soils that are polluted with 2,4-D: A case study in a pilot plant. Science of the Total Environment, 2016, 545-546, 256-265.	3.9	39
64	Geotechnical behaviour of low-permeability soils in surfactant-enhanced electrokinetic remediation. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2016, 51, 44-51.	0.9	12
65	Remediation of soils polluted with 2,4-D by electrokinetic soil flushing with facing rows of electrodes: A case study in a pilot plant. Chemical Engineering Journal, 2016, 285, 128-136.	6.6	54
66	Impacts of rainfall spatial variability on hydrogeological response. Water Resources Research, 2015, 51, 1300-1314.	1.7	40
67	Electrochemically assisted fences for the electroremediation of soils polluted with 2,4-D: A case study in a pilot plant. Separation and Purification Technology, 2015, 156, 234-241.	3.9	46
68	Differentiated intra- and inter-aggregate water content models of mx-80 bentonite. Applied Clay Science, 2015, 118, 325-336.	2.6	52
69	Electroremediation of a natural soil polluted with phenanthrene in a pilot plant. Journal of Hazardous Materials, 2014, 265, 142-150.	6.5	71
70	Removal of phenanthrene from synthetic kaolin soils by electrokinetic soil flushing. Separation and Purification Technology, 2014, 132, 33-40.	3.9	42
71	A multicriteria system for the monitoring and alert of the cracks found in Santos Morcillo Lake, Central Spain. International Journal of Disaster Risk Reduction, 2014, 10, 1-14.	1.8	4
72	An elastoplastic model of bentonite free swelling. Engineering Geology, 2014, 181, 190-201.	2.9	26

5

#	Article	IF	CITATIONS
73	Multiphysics implementation of advanced soil mechanics models. Computers and Geotechnics, 2014, 60, 20-28.	2.3	22
74	A synthetic model of surface inundation relationships and water source impacts of the wetland Las Tablas de Daimiel National Park, Central Spain. Ecological Engineering, 2013, 61, 407-418.	1.6	6
75	Volumetric deformability and water mass exchange of bentonite aggregates. Engineering Geology, 2013, 166, 152-159.	2.9	14
76	Groundwater resources in the Upper Guadiana Basin (Spain): a regional modelling analysis. Hydrogeology Journal, 2013, 21, 1129-1146.	0.9	22
77	Underwater Monitoring of the Cracks Found in Santos Morcillo Lake, Central Spain. Geotechnical Testing Journal, 2013, 36, 20120119.	0.5	3
78	Hydro-mechanical analysis of Co2 storage in porous rocks using a critical state model. International Journal of Rock Mechanics and Minings Sciences, 2012, 54, 19-26.	2.6	26
79	A synthetic model of cracking in Santos Morcillo Lake, central Spain. Computers and Geotechnics, 2012, 40, 1-13.	2.3	6
80	Flow path development in different CO2 storage reservoir scenarios. Engineering Geology, 2012, 127, 54-64.	2.9	25
81	Characterization of the infiltration rate in Las Tablas de Daimiel National Park, Central Spain. Hydrological Processes, 2012, 26, 367-378.	1.1	5
82	A review of Markov Chain Monte Carlo and information theory tools for inverse problems in subsurface flow. Computational Geosciences, 2012, 16, 1-20.	1.2	34
83	An evaluation of the application of treated sewage effluents in Las Tablas de Daimiel National Park, Central Spain. Journal of Hydrology, 2011, 401, 53-64.	2.3	17
84	Influence of the Type of Surfactant on the Mobility of Flushing Fluids for Electro-Remediation Processes. Separation Science and Technology, 2011, 46, 2148-2156.	1.3	24
85	Modeling of the Thermohydrodynamic and Reactive Behavior of Compacted Clay for High-Level Radionuclide Waste-Management Systems. Clays and Clay Minerals, 2010, 58, 486-500.	0.6	3
86	A constitutive model for porous rock including effects of bond strength degradation and partial saturation. International Journal of Rock Mechanics and Minings Sciences, 2010, 47, 1330-1338.	2.6	20
87	Sensitivity analysis applied to slope stabilization at failure. Computers and Geotechnics, 2010, 37, 837-845.	2.3	12
88	Characterization and geochemical–geotechnical properties of granite sawdust produced by the dimension stone industry of O Porriño (Pontevedra, Spain). Quarterly Journal of Engineering Geology and Hydrogeology, 2010, 43, 141-155.	0.8	15
89	Trees, lateral shrinkage and building damage. Engineering Geology, 2009, 108, 189-198.	2.9	5
90	Trees, soil moisture and foundation movements. Computers and Geotechnics, 2009, 36, 810-818.	2.3	11

#	Article	IF	CITATIONS
91	Mobilization analysis of the dolmen of Dombate (Northwest Spain). Engineering Geology, 2008, 100, 59-68.	2.9	3
92	Soil air compression in clays during flood irrigation. European Journal of Soil Science, 2008, 59, 799-806.	1.8	8
93	Settlement of embankment fills constructed of granite fines. Computers and Geosciences, 2008, 34, 978-992.	2.0	11
94	A statistical guide for dynamic-penetration test interpretation. Proceedings of the Institution of Civil Engineers: Geotechnical Engineering, 2008, 161, 291-298.	0.9	2
95	Seepage through side slopes of small water impoundments. Geosynthetics International, 2008, 15, 296-303.	1.5	1
96	Optimisation procedure for choosing Cam clay parameters. Computers and Geotechnics, 2007, 34, 524-531.	2.3	15
97	Hydrodynamic and reactive transport modeling of the behavior of compacted granite saw dust for landfill liners and covers. , 2007, , .		1
98	Characterization of the water flow through concrete based on parameter estimation from infiltration tests. Cement and Concrete Research, 2006, 36, 1575-1582.	4.6	15
99	Non-isothermal multiphase flow and reactive transport modelling of compacted bentonite simultaneously heated and hydrated. Journal of Contaminant Hydrology, 2006, , .	1.6	0
100	Analysis of Installation of FDR Sensors in a Hard Soil. Geotechnical Testing Journal, 2006, 29, 462-466.	0.5	1
101	Microstructural model for delayed deformation of clay: loading history effects. Canadian Geotechnical Journal, 2005, 42, 381-392.	1.4	20
102	Secondary compression of clays as a local dehydration process. Geotechnique, 2001, 51, 859-869.	2.2	36
103	Secondary compression of clays as a local dehydration process. Geotechnique, 2001, 51, 859-869.	2.2	6
104	Coupled Thermo-Hydro-Geochemical Models of Engineered Barrier Systems: The Febex Project. Materials Research Society Symposia Proceedings, 2000, 663, 1.	0.1	2
105	Modeling swelling soils for disposal barriers. Computers and Geotechnics, 2000, 27, 19-43.	2.3	38
106	A catenary model for the analysis of arching effect in soils and its application to predicting sinkhole collapse. Geotechnique, 0, , 1-11.	2.2	4