
Oliver J Monfredi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7799584/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Beyond prediction: Offâ€target uses of artificial intelligenceâ€based predictive analytics in a learning health Systems, 2023, 7, .	2.0	2
2	Exercise in the Genetic Arrhythmia Syndromes – A Review. Clinics in Sports Medicine, 2022, 41, 485-510.	1.8	2
3	cAMP-Dependent Signaling Restores AP Firing in Dormant SA Node Cells via Enhancement of Surface Membrane Currents and Calcium Coupling. Frontiers in Physiology, 2021, 12, 596832.	2.8	17
4	Predictive Monitoring–Impact in Acute Care Cardiology Trial (PM-IMPACCT): Protocol for a Randomized Controlled Trial. JMIR Research Protocols, 2021, 10, e29631.	1.0	7
5	Regulation of sinus node pacemaking and atrioventricular node conduction by HCN channels in health and disease. Progress in Biophysics and Molecular Biology, 2021, 166, 61-85.	2.9	16
6	Remodeling of the Purkinje Network in Congestive Heart Failure in the Rabbit. Circulation: Heart Failure, 2021, 14, e007505.	3.9	11
7	Spontaneous Helix Retraction of the Ingevity+ Pacemaker Lead: A Single-Center Experience. Circulation: Arrhythmia and Electrophysiology, 2021, 14, e009958.	4.8	Ο
8	Cardiac Magnetic Resonance Assessment of Response to Cardiac Resynchronization Therapy and Programming Strategies. JACC: Cardiovascular Imaging, 2021, 14, 2369-2383.	5.3	14
9	β-Adrenergic Stimulation Synchronizes a Broad Spectrum of Action Potential Firing Rates of Cardiac Pacemaker Cells toward a Higher Population Average. Cells, 2021, 10, 2124.	4.1	11
10	Continuous cardiorespiratory monitoring is a dominant source of predictive signal in machine learning for risk stratification and clinical decision support *. Physiological Measurement, 2021, 42, 090301.	2.1	11
11	Heart rate fragmentation gives novel insights into non-autonomic mechanisms governing beat-to-beat control of the heart's rhythm. JRSM Cardiovascular Disease, 2020, 9, 204800402094873.	0.7	9
12	Ultrastructure of primary pacemaking cells in rabbit sinoâ€atrial node cells indicates limited sarcoplasmic reticulum content. FASEB BioAdvances, 2020, 2, 106-115.	2.4	2
13	Overexpression of a Neuronal Type Adenylyl Cyclase (Type 8) in Sinoatrial Node Markedly Impacts Heart Rate and Rhythm. Frontiers in Neuroscience, 2019, 13, 615.	2.8	38
14	Lead extraction in patients with cardiac resynchronization therapy devices: are they worse than the others?. Europace, 2019, 21, 842-843.	1.7	0
15	Complexities in cardiovascular rhythmicity: perspectives on circadian normality, ageing and disease. Cardiovascular Research, 2019, 115, 1576-1595.	3.8	26
16	Machine Learning and Super-Resolution Microscopy Reveal Detailed Hierarchy of Ryanodine Receptor Distribution in Cardiac Pacemaker Cells. Biophysical Journal, 2019, 116, 380a.	0.5	0
17	Was a mistake made when programmed electrical stimulation was eliminated as a sudden death risk marker in hypertrophic cardiomyopathy?. International Journal of Cardiology, 2018, 254, 238-239.	1.7	4
18	Electrophysiological heterogeneity of pacemaker cells in the rabbit intercaval region, including the SA node: insights from recording multiple ion currents in each cell. American Journal of Physiology - Heart and Circulatory Physiology, 2018, 314, H403-H414.	3.2	47

OLIVER J MONFREDI

#	Article	IF	CITATIONS
19	Heterogeneity of calcium clock functions in dormant, dysrhythmically and rhythmically firing single pacemaker cells isolated from SA node. Cell Calcium, 2018, 74, 168-179.	2.4	45
20	Arrhythmic outcome of arrhythmogenic right ventricular cardiomyopathy patients without implantable defibrillators. Journal of Cardiovascular Electrophysiology, 2018, 29, 1396-1402.	1.7	12
21	A coupled-clock system drives the automaticity of human sinoatrial nodal pacemaker cells. Science Signaling, 2018, 11, .	3.6	85
22	Impact of Exercise Restriction on Arrhythmic Risk Among Patients With Arrhythmogenic Right Ventricular Cardiomyopathy. Journal of the American Heart Association, 2018, 7, .	3.7	55
23	Electrically Dormant Sinoatrial Nodal Cells (SANC) are Awakened by Increased Camp-Dependent Phosphorylation of Coupled-Clock Proteins. Biophysical Journal, 2017, 112, 402a-403a.	0.5	3
24	Targeting miR-423-5p Reverses Exercise Training–Induced HCN4 Channel Remodeling and Sinus Bradycardia. Circulation Research, 2017, 121, 1058-1068.	4.5	76
25	Point: Exercise training-induced bradycardia is caused by changes in intrinsic sinus node function. Journal of Applied Physiology, 2017, 123, 684-685.	2.5	30
26	Rebuttal from Boyett et al Journal of Applied Physiology, 2017, 123, 689-689.	2.5	2
27	Computer algorithms for automated detection and analysis of local Ca2+ releases in spontaneously beating cardiac pacemaker cells. PLoS ONE, 2017, 12, e0179419.	2.5	10
28	Inverse Correlation between Heart Rate Variability and Heart Rate Demonstrated by Linear and Nonlinear Analysis. PLoS ONE, 2016, 11, e0157557.	2.5	59
29	Atrioventricular Node Dysfunction and Ion Channel Transcriptome in Pulmonary Hypertension. Circulation: Arrhythmia and Electrophysiology, 2016, 9, .	4.8	22
30	Effect of dual pulmonary vasodilator therapy in pulmonary arterial hypertension associated with congenital heart disease: a retrospective analysis. Open Heart, 2016, 3, e000399.	2.3	7
31	Heterogeneity in Beating and Response to Beta Adrenergic Receptor Stimulation in Isolated Single Sinoatrial Nodal Cells (SANC). Biophysical Journal, 2016, 110, 274a.	0.5	0
32	Synchronization of Local Calcium Releases (LCRs) in Guinea Pig Single, Isolated SA Node Cells Contributes to Generation of Rhythmic Action Potential-Induced Ca2+ Transients. Biophysical Journal, 2016, 110, 434a-435a.	0.5	0
33	Sick sinus syndrome and atrial fibrillation in older persons — A view from the sinoatrial nodal myocyte. Journal of Molecular and Cellular Cardiology, 2015, 83, 88-100.	1.9	91
34	Letter by Monfredi et al Regarding Article, "Physical Activity and Heart Rate Variability in Older Adults: The Cardiovascular Health Study― Circulation, 2015, 131, e348.	1.6	2
35	Autonomic Stimulation Modulates Action Potential Firing Rate in Cardiac Pacemaker Cells via Synchronization of Local Calcium Pumping and Release. Biophysical Journal, 2015, 108, 569a-570a.	0.5	0
36	Biophysical Characterization of the Underappreciated and Important Relationship Between Heart Rate Variability and Heart Rate. Hypertension, 2014, 64, 1334-1343.	2.7	263

OLIVER J MONFREDI

#	Article	IF	CITATIONS
37	Exercise training reduces resting heart rate via downregulation of the funny channel HCN4. Nature Communications, 2014, 5, 3775.	12.8	194
38	Modern Concepts Concerning the Origin of the Heartbeat. Physiology, 2013, 28, 74-92.	3.1	75
39	Percutaneous device closure of atrial septal defect results in very early and sustained changes of right and left heart function. International Journal of Cardiology, 2013, 167, 1578-1584.	1.7	26
40	Viewpoint: Is the resting bradycardia in athletes the result of remodeling of the sinoatrial node rather than high vagal tone?. Journal of Applied Physiology, 2013, 114, 1351-1355.	2.5	64
41	Reply to Matelot, Schnell, Kervio, Thillaye du Boullay, and Carre. Journal of Applied Physiology, 2013, 114, 1757-1757.	2.5	0
42	Beat-to-Beat Variation in Periodicity of Local Calcium Releases Contributes to Intrinsic Variations of Spontaneous Cycle Length in Isolated Single Sinoatrial Node Cells. PLoS ONE, 2013, 8, e67247.	2.5	48
43	Stochastic Beat-To-Beat Variation in Periodicity of Local Calcium Releases Predicts Intrinsic Cycle Length Variability in Single Sinoatrial Node Cells. Biophysical Journal, 2011, 100, 558a.	0.5	5
44	Changes in the expression of ion channels, connexins and Ca2+-handling proteins in the sino-atrial node during postnatal development. Experimental Physiology, 2011, 96, 426-438.	2.0	17
45	Efficacy and Safety of Bosentan for Pulmonary Arterial Hypertension in Adults With Congenital Heart Disease. American Journal of Cardiology, 2011, 108, 1483-1488.	1.6	24
46	The Anatomy and Physiology of the Sinoatrial Node-A Contemporary Review. PACE - Pacing and Clinical Electrophysiology, 2010, 33, 1392-1406.	1.2	166
47	No way in & no way out: a case of renal failure due to both pre- and post-renal obstruction. Nephrology Dialysis Transplantation, 2008, 23, 2406-2408.	0.7	1