List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7799465/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Modelling debris flows down general channels. Natural Hazards and Earth System Sciences, 2005, 5, 799-819.	1.5	148
2	DEM simulation of impact force exerted by granular flow on rigid structures. Acta Geotechnica, 2011, 6, 119-133.	2.9	121
3	PERISTALTIC TRANSPORT OF A THIRD-ORDER FLUID IN A CIRCULAR CYLINDRICAL TUBE. Mathematical Models and Methods in Applied Sciences, 2002, 12, 1691-1706.	1.7	117
4	Rapid flow of dry granular materials down inclined chutes impinging on rigid walls. Physics of Fluids, 2007, 19, 053302.	1.6	115
5	Peristaltic motion of a Johnson-Segalman fluid in a planar channel. Mathematical Problems in Engineering, 2003, 2003, 1-23.	0.6	96
6	Peristaltic transport of an Oldroyd-B fluid in a planar channel. Mathematical Problems in Engineering, 2004, 2004, 347-376.	0.6	96
7	Magnetohydrodynamic peristaltic motion of a Sisko fluid in a symmetric or asymmetric channel. Physica A: Statistical Mechanics and Its Applications, 2008, 387, 347-362.	1.2	96
8	Hydromagnetic flow in a viscoelastic fluid due to the oscillatory stretching surface. International Journal of Non-Linear Mechanics, 2008, 43, 783-793.	1.4	95
9	Flow–obstacle interaction in rapid granular avalanches: DEM simulation and comparison with experiment. Granular Matter, 2009, 11, 209-220.	1.1	93
10	Comparisons of numerical methods with respect to convectively dominated problems. International Journal for Numerical Methods in Fluids, 2001, 37, 721-745.	0.9	87
11	Velocity measurements in dry granular avalanches using particle image velocimetry technique and comparison with theoretical predictions. Physics of Fluids, 2005, 17, 093301.	1.6	75
12	Slip effects and heat transfer analysis in a viscous fluid over an oscillatory stretching surface. International Journal for Numerical Methods in Fluids, 2009, 59, 443-458.	0.9	75
13	Mixed convection in the stagnation-point flow of a Maxwell fluid towards a vertical stretching surface. Nonlinear Analysis: Real World Applications, 2010, 11, 3218-3228.	0.9	74
14	Unified modelling of granular media with Smoothed Particle Hydrodynamics. Acta Geotechnica, 2016, 11, 1231-1247.	2.9	73
15	Dilatancy and compaction effects on the submerged granular column collapse. Physics of Fluids, 2017, 29, .	1.6	70
16	Hall effects on the unsteady hydromagnetic oscillatory flow of a second-grade fluid. International Journal of Non-Linear Mechanics, 2004, 39, 1027-1037.	1.4	67
17	The Savage–Hutter avalanche model: how far can it be pushed?. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2005, 363, 1507-1528.	1.6	64
18	A constitutive model of multiphase mixtures and its application in shearing flows of saturated solid-fluid mixtures. Granular Matter, 1999, 1, 163-181.	1.1	61

#	Article	IF	CITATIONS
19	The Savage-Hutter theory: A system of partial differential equations for avalanche flows of snow, debris, and mud. ZAMM Zeitschrift Fur Angewandte Mathematik Und Mechanik, 2004, 84, 507-527.	0.9	58
20	A constitutive theory of fluid-saturated granular materials and its application in gravitational flows. Rheologica Acta, 1999, 38, 214-223.	1.1	56
21	Peristaltic flow of a Johnson-Segalman fluid through a deformable tube. Theoretical and Computational Fluid Dynamics, 2007, 21, 369-380.	0.9	52
22	Peristaltic motion of a magnetohydrodynamic micropolar fluid in a tube. Applied Mathematical Modelling, 2011, 35, 3737-3750.	2.2	49
23	Influence of obstacles on rapid granular flows. Acta Mechanica, 2005, 175, 105-122.	1.1	41
24	Rapid motions of free-surface avalanches down curved and twisted channels and their numerical simulation. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2005, 363, 1551-1571.	1.6	40
25	Smoothed Particle Hydrodynamics Simulation of Water-Soil Mixture Flows. Journal of Hydraulic Engineering, 2016, 142, .	0.7	38
26	Long wavelength approximation to peristaltic motion of an Oldroyd 4-constant fluid in a planar channel. Biorheology, 2008, 45, 611-628.	1.2	37
27	Two-fluid smoothed particle hydrodynamics simulation of submerged granular column collapse. Mechanics Research Communications, 2017, 79, 15-23.	1.0	33
28	Slip Effects on the Peristaltic Flow of a Third Grade Fluid in a Circular Cylindrical Tube. Journal of Applied Mechanics, Transactions ASME, 2009, 76, .	1.1	31
29	Modelling and numerical simulation of two-phase debris flows. Acta Geotechnica, 2016, 11, 1027-1045.	2.9	31
30	SHEARING FLOWS IN A GOODMAN-COWIN TYPE GRANULAR MATERIAL—THEORY AND NUMERICAL RESULTS. Particulate Science and Technology, 1999, 17, 97-124.	1.1	30
31	Large Eddy Simulation of Sediment Deformation in a Turbulent Flow by Means of Level-Set Method. Journal of Hydraulic Engineering, 2011, 137, 1394-1405.	0.7	30
32	A hypoplastic constitutive model for debris materials. Acta Geotechnica, 2016, 11, 1217-1229.	2.9	29
33	Granular Material Theories Revisited. , 2001, , 79-107.		28
34	FLOW OF A FOURTH GRADE FLUID. Mathematical Models and Methods in Applied Sciences, 2002, 12, 797-811.	1.7	28
35	Avalanching granular flows down curved and twisted channels: Theoretical and experimental results. Physics of Fluids, 2008, 20, .	1.6	27
36	Simple multidimensional integration of discontinuous functions with application to level set methods. International Journal for Numerical Methods in Engineering, 2012, 92, 637-651.	1.5	27

#	Article	IF	CITATIONS
37	On non-linear magnetohydrodynamic problems of an Oldroyd 6-constant fluid. International Journal of Non-Linear Mechanics, 2005, 40, 49-58.	1.4	26
38	A thermo-mechanical continuum theory with internal length for cohesionless granular materials. Continuum Mechanics and Thermodynamics, 2006, 17, 545-576.	1.4	26
39	Modeling Twoâ€Phase Debris Flows With Grainâ€Fluid Separation Over Rugged Topography: Application to the 2009 Hsiaolin Event, Taiwan. Journal of Geophysical Research F: Earth Surface, 2019, 124, 305-333.	1.0	24
40	A Semi-Implicit Semispectral Primitive Equation Model for Lake Circulation Dynamics and Its Stability Performance. Journal of Computational Physics, 1998, 139, 209-241.	1.9	23
41	Fluctuating flow of a Maxwell fluid past a porous plate with variable suction. Nonlinear Analysis: Real World Applications, 2008, 9, 1269-1282.	0.9	23
42	A thermo-mechanical continuum theory with internal length for cohesionless granular materials. Continuum Mechanics and Thermodynamics, 2006, 17, 577-607.	1.4	22
43	Hydromagnetic rotating flow of a fourth-order fluid past a porous plate. Mathematical Methods in the Applied Sciences, 2004, 27, 477-496.	1.2	20
44	Shearing flows of a dry granular material—hypoplastic constitutive theory and numerical simulations. International Journal for Numerical and Analytical Methods in Geomechanics, 2006, 30, 1409-1437.	1.7	20
45	A thermodynamic model of multiphase flows with moving interfaces and contact line. Continuum Mechanics and Thermodynamics, 2011, 23, 409-433.	1.4	20
46	Wind-induced baroclinic response of Lake Constance. Annales Geophysicae, 2000, 18, 1488-1501.	0.6	19
47	A mathematical model for the study of gliding motion of bacteria on a layer of non-Newtonian slime. Mathematical Methods in the Applied Sciences, 2004, 27, 1447-1468.	1.2	19
48	Gliding motion of bacteria on power-law slime. Mathematical Methods in the Applied Sciences, 2005, 28, 329-347.	1.2	19
49	Unsteady flow of a fourth-grade fluid due to an oscillating plate. International Journal of Non-Linear Mechanics, 2007, 42, 432-441.	1.4	17
50	A unified evolution equation for the Cauchy stress tensor of an isotropic elasto-visco-plastic material. Continuum Mechanics and Thermodynamics, 2008, 19, 423-440.	1.4	16
51	Chapter Four. Phenomenological Thermodynamics and Entropy Principles. , 2003, , 57-78.		15
52	Modeling dynamic flows of grain–fluid mixtures by coupling the mixture theory with a dilatancy law. Acta Mechanica, 2018, 229, 2521-2538.	1.1	15
53	A two-fluid model for calcium carbonate precipitation in highly supersaturated solutions. Advanced Powder Technology, 2018, 29, 1571-1581.	2.0	15
54	Methods of similitude in granular avalanche flows. Lecture Notes in Physics, 1999, , 415-428.	0.3	14

#	Article	IF	CITATIONS
55	Magnetohydrodynamic flow due to noncoaxial rotations of a porous disk and a fourth-grade fluid at infinity. Mathematical Problems in Engineering, 2003, 2003, 47-64.	0.6	14
56	Peristaltic motion of a magnetohydrodynamic generalized secondâ€order fluid in an asymmetric channel. Numerical Methods for Partial Differential Equations, 2011, 27, 415-435.	2.0	14
57	Conservation laws of surfactant transport equations. Physics of Fluids, 2012, 24, .	1.6	14
58	Wind-driven current simulations around the Island Mainau (Lake Constance). Ecological Modelling, 2001, 138, 55-73.	1.2	13
59	Unified constitutive model for granular–fluid mixture in quasi-static and dense flow regimes. Acta Geotechnica, 2021, 16, 775-787.	2.9	13
60	Importance of subgrid-scale parameterization in numerical simulations of lake circulation. Advances in Water Resources, 2003, 26, 277-294.	1.7	12
61	Slip effects on shearing flows in a porous medium. Acta Mechanica Sinica/Lixue Xuebao, 2008, 24, 51-59.	1.5	12
62	Physics of Lakes. Advances in Geophysical and Environmental Mechanics and Mathematics, 2014, , .	0.1	12
63	Modeling of unsaturated granular flows by a two-layer approach. Acta Geotechnica, 2017, 12, 677-701.	2.9	12
64	Physics of Lakes. Advances in Geophysical and Environmental Mechanics and Mathematics, 2011, , .	0.1	12
65	Autumn physical limnological experimental campaign in the Island Mainau littoral zone of Lake Constance. Journal of Limnology, 2003, 62, 115.	0.3	11
66	Investigation of Submerged Soil Excavation by High-Velocity Water Jet Using Two-Fluid Smoothed Particle Hydrodynamics Method. Journal of Hydraulic Engineering, 2019, 145, .	0.7	11
67	Physics of Lakes. Advances in Geophysical and Environmental Mechanics and Mathematics, 2011, , .	0.1	11
68	Comparison of numerical schemes for the solution of the advective age equation in ice sheets. Annals of Glaciology, 2002, 35, 487-494.	2.8	11
69	Barotropic response in a lake to wind-forcing. Annales Geophysicae, 2001, 19, 367-388.	0.6	11
70	Time-dependent magnetohydrodynamic flow induced by non-coaxial rotations of a non-torsionally oscillating porous plate and a third-order fluid at infinity. Mathematical and Computer Modelling, 2007, 46, 1277-1293.	2.0	10
71	Thermodynamically consistent modeling of granular-fluid mixtures incorporating pore pressure evolution and hypoplastic behavior. Continuum Mechanics and Thermodynamics, 2017, 29, 311-343.	1.4	10
72	Forced motion response in enclosed lakes. Coastal and Estuarine Studies, 1998, , 137-166.	0.4	9

#	Article	IF	CITATIONS
73	Comparing Two Topography-Following Primitive Equation Models for Lake Circulation. Journal of Computational Physics, 1999, 153, 638-659.	1.9	9
74	Three-dimensional wind-induced baroclinic circulation in rectangular basins. Advances in Water Resources, 2000, 24, 11-27.	1.7	9
75	Time-dependent Poiseuille flows of visco-elasto-plastic fluids. Acta Mechanica, 2006, 186, 187-201.	1.1	9
76	Methods of substructuring in lake circulation dynamics. Advances in Water Resources, 2000, 23, 399-425.	1.7	8
77	Numerical solution of peristaltic transport of an Oldroyd 8-constant fluid in a circular cylindrical tube. Canadian Journal of Physics, 2009, 87, 1047-1058.	0.4	8
78	Magnetohydrodynamic flows of an Oldroyd 8-constant fluid in a porous medium. Canadian Journal of Physics, 2004, 82, 965-980.	0.4	7
79	A Variational Principle for the Revised Goodman–Cowin Theory with Internal Length. Archive of Applied Mechanics, 2006, 76, 119-131.	1.2	7
80	Exact solutions to the interfacial surfactant transport equation on a droplet in a Stokes flow regime. Physics of Fluids, 2015, 27, .	1.6	7
81	A two-fluid model for reactive dilute solid–liquid mixtures with phase changes. Continuum Mechanics and Thermodynamics, 2017, 29, 509-534.	1.4	7
82	Analytical solutions of oscillating Couette–Poiseuille flows for the viscoelastic Oldroyd B fluid. Acta Mechanica, 2019, 230, 2249-2266.	1.1	7
83	Asymptotic analysis of the eigenstructure of the two-layer model and a new family of criteria for evaluating the model hyperbolicity. Advances in Water Resources, 2021, 154, 103966.	1.7	7
84	Barotropic wind-driven circulation patterns in a closed rectangular basin of variable depth influenced by a peninsula or an island. Annales Geophysicae, 2000, 18, 706-727.	0.6	6
85	Dynamics of avalanches along general mountain slopes. Annals of Glaciology, 2004, 38, 357-362.	2.8	6
86	Investigations of Gravity-Driven Two-Phase Debris Flows. Springer Series in Geomechanics and Geoengineering, 2015, , 119-130.	0.0	6
87	Granular flows in a rotating drum and on an inclined plane: Analytical and numerical solutions. Physics of Fluids, 2018, 30, .	1.6	6
88	A well-posed multilayer model for granular avalanches with <i>î¼</i> (<i>I</i>) rheology. Physics of Fluids, 2021, 33, .	1.6	6
89	Analytical investigation of rotationally symmetrical oscillating flows of viscoelastic fluids. Journal of Non-Newtonian Fluid Mechanics, 2019, 272, 104168.	1.0	5
90	On a non-linear droplet oscillation theory via the unified method. Physics of Fluids, 2020, 32, 067104.	1.6	5

#	Article	IF	CITATIONS
91	Probability theory of active suspensions. Physics of Fluids, 2021, 33, .	1.6	5
92	Continuum Mechanics and Applications in Geophysics and the Environment. Applied Mechanics Reviews, 2002, 55, B79.	4.5	5
93	Observation and Analysis of Internal Seiches in the Southern Basin of Lake of Lugano. Advances in Geophysical and Environmental Mechanics and Mathematics, 2011, , 315-353.	0.1	4
94	A continuum thermodynamical approach to electrochemical systems. Journal of Mathematical Chemistry, 2014, 52, 441-463.	0.7	4
95	Toward the thermodynamic modeling of reacting ionic mixtures. Continuum Mechanics and Thermodynamics, 2014, 26, 753-769.	1.4	4
96	Turbulent Mixing Length Models and Their Applications to Elementary Flow Configurations. Advances in Geophysical and Environmental Mechanics and Mathematics, 2016, , 263-316.	0.1	4
97	Phenomenological Thermodynamics of Irreversible Processes. Entropy, 2018, 20, 479.	1.1	4
98	Comparing Different Numerical Treatments of Advection Terms for Wind-Induced Circulations in Lake Constance. , 2001, , 368-393.		4
99	The Role of Advection and Stratification in Wind-driven Diffusion Problems of Alpine Lakes. Hupo Kexue/Journal of Lake Sciences, 1998, 10, 447-475.	0.3	4
100	Phenomenological Thermodynamics and Entropy Principles. , 0, , 57-78.		4
101	MHD peristaltic flow of a third order fluid in an asymmetric channel. International Journal for Numerical Methods in Fluids, 2010, 64, 992-1013.	0.9	3
102	Thermodynamics—Fundamentals. Advances in Geophysical and Environmental Mechanics and Mathematics, 2016, , 317-420.	0.1	3
103	Debris flows with pore pressure and intergranular friction on rugged topography. Computers and Fluids, 2019, 190, 139-155.	1.3	3
104	Investigation of influence of an obstacle on granular flows by virtue of a depth-integrated theory. European Journal of Mechanics, B/Fluids, 2020, 84, 334-349.	1.2	3
105	A Eulerian–Lagrangian Coupled Method for the Simulation of Submerged Granular Column Collapse. Journal of Marine Science and Engineering, 2021, 9, 617.	1.2	3
106	Constitutive modeling of multiphase flows with moving interfaces and contact line. Continuum Mechanics and Thermodynamics, 2013, 25, 705-725.	1.4	2
107	Toward the modeling of combustion reactions through discrete element method (DEM) simulations. Computational Particle Mechanics, 2018, 5, 579-591.	1.5	2
108	On the role of pore-fluid pressure evolution and hypoplasticity in debris flows. European Journal of Mechanics, B/Fluids, 2019, 74, 363-379.	1.2	2

#	Article	IF	CITATIONS
109	High-order simulation scheme for active particles driven by stress boundary conditions. Journal of Physics Condensed Matter, 2021, 33, 244004.	0.7	2
110	Prograding and Retrograding Hypo- and Hyper-Pycnal Deltaic Formations into Quiescent Ambients. Advances in Geophysical and Environmental Mechanics and Mathematics, 2014, , 401-485.	0.1	2
111	A deterministic two-phase model for an active suspension with non-spherical active particles using theory. Physics of Fluids, 2022, 34, 023302.	1.6	2
112	Higher-Order Baroclinicity (I): Two Fluid Layers with Diffuse Interface – Three Fluid Layers with Sharp Interfaces. Advances in Geophysical and Environmental Mechanics and Mathematics, 2011, , 197-250.	0.1	1
113	Analytical Investigation of Viscoelastic Stagnation-Point Flows with Regard to Their Singularity. Applied Sciences (Switzerland), 2021, 11, 6931.	1.3	1
114	Viscous Fluids. Advances in Geophysical and Environmental Mechanics and Mathematics, 2016, , 347-421.	0.1	1
115	Phenomenological Coefficients of Water. Advances in Geophysical and Environmental Mechanics and Mathematics, 2011, , 389-418.	0.1	1
116	The Role of the Earth's Rotation: Oscillations in Semi-bounded and Bounded Basins of Constant Depth. Advances in Geophysical and Environmental Mechanics and Mathematics, 2011, , 49-113.	0.1	1
117	Subgrid-Scale Parameterization in Numerical Simulations of Lake Circulation. Advances in Geophysical and Environmental Mechanics and Mathematics, 2014, , 173-205.	0.1	1
118	The Importance of Reasonable Numerical Schemes in Lake Circulation Simulation. Proceedings in Applied Mathematics and Mechanics, 2002, 1, 530.	0.2	0
119	Basin-Scale Gravity Waves in Circular and Elliptical Containers on the Rotating Earth. Advances in Geophysical and Environmental Mechanics and Mathematics, 2011, , 115-154.	0.1	0
120	Barotropic and Baroclinic Basin-Scale Wave Dynamics Affected by the Rotation of the Earth. Advances in Geophysical and Environmental Mechanics and Mathematics, 2011, , 155-195.	0.1	0
121	Uniqueness and Stability. Advances in Geophysical and Environmental Mechanics and Mathematics, 2016, , 197-225.	0.1	0
122	Shallow Rapid Granular Avalanches. Advances in Geophysical and Environmental Mechanics and Mathematics, 2016, , 113-196.	0.1	0
123	Dimensional Analysis, Similitude and Physical Experiments at Laboratory Scale. Advances in Geophysical and Environmental Mechanics and Mathematics, 2016, , 537-607.	0.1	0
124	Conservation of Angular Momentum—Vorticity. Advances in Geophysical and Environmental Mechanics and Mathematics, 2016, , 159-195.	0.1	0
125	Nematic Liquid Crystals with Tensorial Order Parameters. Advances in Geophysical and Environmental Mechanics and Mathematics, 2018, , 283-345.	0.1	0
126	Thermodynamics of Class I and Class II Classical Mixtures. Advances in Geophysical and Environmental Mechanics and Mathematics, 2018, , 75-137.	0.1	0

#	Article	IF	CITATIONS
127	Multiphase Flows with Moving Interfaces and Contact Line—Balance Laws. Advances in Geophysical and Environmental Mechanics and Mathematics, 2018, , 347-407.	0.1	0
128	A Brief Review of the Basic Thermomechanical Laws of Classical Physics. Advances in Geophysical and Environmental Mechanics and Mathematics, 2011, , 67-82.	0.1	0
129	Vertical Structure of Wind-Induced Currents in Homogeneous and Stratified Waters. Advances in Geophysical and Environmental Mechanics and Mathematics, 2011, , 319-387.	0.1	Ο
130	Conservation of Angular Momentum–Vorticity. Advances in Geophysical and Environmental Mechanics and Mathematics, 2011, , 157-184.	0.1	0
131	Turbulence Modelling. Advances in Geophysical and Environmental Mechanics and Mathematics, 2011, , 185-220.	0.1	Ο
132	Introduction to Linear Waves. Advances in Geophysical and Environmental Mechanics and Mathematics, 2011, , 221-261.	0.1	0
133	Fundamental Equations of Lake Hydrodynamics. Advances in Geophysical and Environmental Mechanics and Mathematics, 2011, , 83-155.	0.1	0
134	Higher-Order Baroclinicity (II)Interpretation of Lake Data with Rotating and Non-rotating Models. Advances in Geophysical and Environmental Mechanics and Mathematics, 2011, , 251-286.	0.1	0
135	Topographic Waves in Basins with Complex Shapes and Complex Bathymetries. Advances in Geophysical and Environmental Mechanics and Mathematics, 2011, , 447-536.	0.1	Ο
136	Topographic RossbyWaves in Basins of Simple Geometry. Advances in Geophysical and Environmental Mechanics and Mathematics, 2011, , 399-445.	0.1	0
137	Numerical Modelling of Interaction Between Snow Avalanche and Protective Structures. Springer Series in Geomechanics and Geoengineering, 2011, , 153-158.	0.0	Ο
138	Barotropic Oscillations in Lake Onega: A Lake of Complex Geometry. Advances in Geophysical and Environmental Mechanics and Mathematics, 2011, , 287-314.	0.1	0
139	A Class of Chrystal-Type Equations. Advances in Geophysical and Environmental Mechanics and Mathematics, 2011, , 537-626.	0.1	0
140	Topographic Waves in Enclosed Basins: Fundamentals and Observations. Advances in Geophysical and Environmental Mechanics and Mathematics, 2011, , 355-398.	0.1	0
141	Modeling of Channel Flows with Transition Interface Separating Free Surface and Pressurized Channel Flows. International Series of Numerical Mathematics, 2012, , 83-109.	1.0	0
142	Measuring Methods and Techniques. Advances in Geophysical and Environmental Mechanics and Mathematics, 2014, , 285-306.	0.1	0
143	Comparing Different Numerical Treatments of Advection Terms for Wind-Induced Circulations in Lakes. Advances in Geophysical and Environmental Mechanics and Mathematics, 2014, , 129-172.	0.1	0
144	Sediment Transport in Alluvial Systems. Advances in Geophysical and Environmental Mechanics and Mathematics, 2014, , 487-579.	0.1	0

#	Article	IF	CITATIONS
145	Dimensional Analysis, Similitude and Model Experiments. Advances in Geophysical and Environmental Mechanics and Mathematics, 2014, , 307-396.	0.1	0
146	Response of a Stratified Alpine Lake to External Wind Fields: Numerical Prediction and Comparison with Field Observations. Advances in Geophysical and Environmental Mechanics and Mathematics, 2014, , 35-90.	0.1	0
147	Instruments and Sensors. Advances in Geophysical and Environmental Mechanics and Mathematics, 2014, , 213-283.	0.1	0
148	Barotropic Wind-Induced Motions in a Shallow Lake. Advances in Geophysical and Environmental Mechanics and Mathematics, 2014, , 5-34.	0.1	0
149	Simple Two- and Three-Dimensional Flow Problems of the Navier-Stokes Equations. Advances in Geophysical and Environmental Mechanics and Mathematics, 2016, , 423-484.	0.1	0
150	Simple Solutions of Boundary Layer Equations. Advances in Geophysical and Environmental Mechanics and Mathematics, 2016, , 485-575.	0.1	0
151	Turbulent Modeling. Advances in Geophysical and Environmental Mechanics and Mathematics, 2016, , 227-261.	0.1	Ο
152	An Almanac of Simple Flow Problems of Ideal Fluids. Advances in Geophysical and Environmental Mechanics and Mathematics, 2016, , 197-269.	0.1	0
153	Function-Theoretical Methods Applied to Plane Potential Flows. Advances in Geophysical and Environmental Mechanics and Mathematics, 2016, , 271-346.	0.1	Ο
154	Thermodynamics—Field Formulation. Advances in Geophysical and Environmental Mechanics and Mathematics, 2016, , 421-482.	0.1	0
155	Hydrodynamics of Ideal Liquids. Advances in Geophysical and Environmental Mechanics and Mathematics, 2016, , 57-158.	0.1	0
156	Gas Dynamics. Advances in Geophysical and Environmental Mechanics and Mathematics, 2016, , 483-536.	0.1	0
157	Three-Dimensional Creeping Flow—Systematic Derivation of the Shallow Flow Approximations. Advances in Geophysical and Environmental Mechanics and Mathematics, 2016, , 47-111.	0.1	Ο
158	Hydrostatics. Advances in Geophysical and Environmental Mechanics and Mathematics, 2016, , 15-55.	0.1	0
159	Numerical simulations for homogeneous nucleation of calcium carbonate in concentrated electrolyte solutions. International Journal of Computational Methods and Experimental Measurements, 2017, 6, 35-45.	0.1	Ο
160	Modeling debris flow: On the influence of pore pressure evolution and hypoplasticity. International Journal of Computational Methods and Experimental Measurements, 2017, 6, 385-397.	0.1	0
161	Balance Laws of Continuous System. Advances in Geophysical and Environmental Mechanics and Mathematics, 2018, , 1-36.	0.1	0
162	A Granular Fluid as a Limit of a Binary Mixture Theory—Treated as a One-Constituent Goodman–Cowin-Type Material. Advances in Geophysical and Environmental Mechanics and Mathematics, 2018, , 457-511.	0.1	0

#	Article	IF	CITATIONS
163	Modeling of Turbulence in Rapid Granular Flows. Advances in Geophysical and Environmental Mechanics and Mathematics, 2018, , 551-607.	0.1	0
164	A Continuum Approach to Liquid Crystals—The Ericksen–Leslie–Parody Formulation. Advances in Geophysical and Environmental Mechanics and Mathematics, 2018, , 203-282.	0.1	0
165	Kinematics of Classical and Cosserat Continua. Advances in Geophysical and Environmental Mechanics and Mathematics, 2018, , 37-73.	0.1	0
166	Porous Effects in the Description of the Dynamics of Granular Avalanches. , 2005, , 81-89.		0