Seiya Kasai

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7799126/publications.pdf

Version: 2024-02-01

142	1,432	19	29
papers	citations	h-index	g-index
144	144	144	1066
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Effect of asymmetric deformation dynamics in amoeboid organism on its search ability. Bioinspiration and Biomimetics, 2021, 16, 036003.	1.5	О
2	Fabrication and characterization of a nano-convex-embedded Si MOSFET for nano-scale electrical discrimination. Japanese Journal of Applied Physics, 2021, 60, SCCE10.	0.8	1
3	Resource-saving FPGA Implementation of the Satisfiability Problem Solver: AmoebaSATslim., 2021, , .		4
4	Amoeba-inspired analog electronic computing system integrating resistance crossbar for solving the travelling salesman problem. Scientific Reports, 2020, 10, 20772.	1.6	8
5	Effect of feedback delays on solution quality in amoeba-inspired computing system that solves traveling salesman problem. Applied Physics Express, 2020, 13, 114501.	1.1	1
6	Current timer switch in a GaAs-based nanowire coupled with polyoxometalate nanoparticle and conductive AFM tip. Japanese Journal of Applied Physics, 2020, 59, 105005.	0.8	1
7	Formation and characterization of charge coupled structure of polyoxometalate particles and a GaAs-based nanowire for readout of molecular charge states. Japanese Journal of Applied Physics, 2019, 58, SDDE13.	0.8	2
8	Insight into in-plane isotropic transport in anthracene-based organic semiconductors. Journal of Materials Chemistry C, 2019, 7, 14275-14283.	2.7	10
9	Analytical derivation of charge relaxation time distribution in transistor from current noise spectrum using inverse integral transformation method. Applied Physics Express, 2018, 11, 031201.	1.1	1
10	Intrinsic charge carrier mobility in single-crystal OFET by "fast trapping vs. slow detrapping―model. Organic Electronics, 2018, 54, 237-244.	1.4	15
11	Divergence of relative difference in Gaussian distribution function and stochastic resonance in a bistable system with frictionless state transition. Applied Physics Express, 2018, 11, 037301.	1.1	8
12	Amoeba-Inspired Electronic Solution-Searching System and Its Application to Finding Walking Maneuver of a Multi-legged Robot., 2018,,.		4
13	Energy gap opening by crossing drop cast single-layer graphene nanoribbons. Nanotechnology, 2018, 29, 315705.	1.3	7
14	Implementation of a noise-coexistence threshold logic architecture on a GaAs-based nanowire FET network. International Journal of Parallel, Emergent and Distributed Systems, 2017, 32, 287-294.	0.7	0
15	Room-temperature discrete-charge-fluctuation dynamics of a single molecule adsorbed on a carbon nanotube. Nanoscale, 2017, 9, 10674-10683.	2.8	25
16	Detection of charge dynamics of a tetraphenylporphyrin particle using GaAs-based nanowire enhanced by particle–metal tip capacitive coupling. Japanese Journal of Applied Physics, 2017, 56, 06GK02.	0.8	3
17	Detection and Control of Charge State in Single Molecules Toward Informatics in Molecule Networks. Advances in Atom and Single Molecule Machines, 2017, , 69-94.	0.0	1
18	Fabrication and characterization of a multiple gate nanowire FET for detecting spatially distributed molecular charges., 2016,,.		0

#	Article	IF	CITATIONS
19	Detection of discrete surface charge dynamics in GaAs-based nanowire through metal-tip-induced current fluctuation. Japanese Journal of Applied Physics, 2016, 55, 02BD01.	0.8	4
20	Robust myoelectric signal detection based on stochastic resonance using multiple-surface-electrode array made of carbon nanotube composite paper. Japanese Journal of Applied Physics, 2016, 55, 04EM07.	0.8	2
21	Physarum-Inspired Electronic and Nanoelectronic Computing Systems. Emergence, Complexity and Computation, 2016, , 109-132.	0.2	0
22	Design Framework of Image Sensor System Based on Dynamic Range Extension by Adding Noise for Saturated Conditions. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2016, 46, 1121-1128.	5.9	8
23	Method for Controlling Electrical Properties of Single-Layer Graphene Nanoribbons via Adsorbed Planar Molecular Nanoparticles. Scientific Reports, 2015, 5, 12341.	1.6	21
24	Structural parameter dependence of directed current generation in GaAs nanowire-based electron Brownian ratchet devices. Japanese Journal of Applied Physics, 2015, 54, 06FG02.	0.8	5
25	Detection of molecular charge dynamics through current noise in a GaAs-based nanowire FET. Japanese Journal of Applied Physics, 2015, 54, 04DN07.	0.8	8
26	Analysis on Non-Ideal Nonlinear Characteristics of Graphene-Based Three-Branch Nano-Junction Device. IEICE Transactions on Electronics, 2015, E98.C, 434-438.	0.3	1
27	Amoeba-inspired nanoarchitectonic computing implemented using electrical Brownian ratchets. Nanotechnology, 2015, 26, 234001.	1.3	31
28	Concept, analysis, and demonstration of a novel delay network exhibiting stochastic resonance induced by external noise., 2015, 37, 1-12.		8
29	Calculating relaxation time distribution function from power spectrum based on inverse integral transformation method. Physics Letters, Section A: General, Atomic and Solid State Physics, 2015, 379, 738-742.	0.9	3
30	Fabrication and Characterization of Fully Transparent ZnO Thin-Film Transistors and Self-Switching Nano-Diodes. Journal of Physics: Conference Series, 2015, 647, 012068.	0.3	3
31	Detection of weak biological signal utilizing stochastic resonance in a GaAs-based nanowire FET and its parallel summing network. Japanese Journal of Applied Physics, 2014, 53, 06JE01.	0.8	6
32	Surface dependence of nonlinear characteristic in GaAs-based three-branch nanowire junctions. , 2014, , .		0
33	Stochastic resonance and related phenomena in nonlinear electron nanodevices. , 2014, , .		1
34	Boolean Logic Circuits on Nanowire Networks and Related Technologies. Nano-optics and Nanophotonics, 2014, , 115-143.	0.2	0
35	GaAs-Based Nanowire Devices with Multiple Asymmetric Gates for Electrical Brownian Ratchets. Japanese Journal of Applied Physics, 2013, 52, 06GE07.	0.8	16
36	Characterization of GaAs-Based Three-Branch Nanowire Junction Devices by Light-Induced Local Conductance Modulation Method. Japanese Journal of Applied Physics, 2013, 52, 06GE08.	0.8	2

#	Article	IF	CITATIONS
37	Design and characterization of nonlinear functions for the transmission of a small signal with non-Gaussian noise. Physical Review E, 2013, 88, 062127.	0.8	8
38	Noise-Tolerant Model of a Ternary Inverter Based on Markov Random Field. , 2013, , .		0
39	Amoeba-inspired computing architecture implemented using charge dynamics in parallel capacitance network. Applied Physics Letters, 2013, 103, 163703.	1.5	17
40	Rectification Effects of ZnO-Based Transparent Nanodiodes on Glass and Flexible Plastic Substrates. Japanese Journal of Applied Physics, 2013, 52, 06GE09.	0.8	11
41	Grapheneâ€based threeâ€branch nanoâ€junction (TBJ) logic inverter. Physica Status Solidi C: Current Topics in Solid State Physics, 2013, 10, 1485-1488.	0.8	6
42	Terahertz Response in Schottky Warp-Gate Controlled Single Electron Transistors. Lecture Notes in Nanoscale Science and Technology, 2013, , 351-360.	0.4	0
43	WPG-Controlled Quantum BDD Circuits with BDD Architecture on GaAs-Based Hexagonal Nanowire Network Structure. Journal of Nanomaterials, 2012, 2012, 1-6.	1.5	0
44	Characterization of Low-Frequency Noise in Etched GaAs Nanowire Field-Effect Transistors Having SiN\$_{x}\$ Gate Insulator. Japanese Journal of Applied Physics, 2012, 51, 06FE18.	0.8	13
45	Room temperature nonlinear operation of a graphene-based three-branch nanojunction device with chemical doping. Applied Physics Letters, 2012, 100, .	1.5	22
46	Fabrication and transport performance of three-branch junction graphene nanostructure., 2012,,.		0
47	Design of nanoelectronic ICs: Noise-tolerant logic based on cyclic BDD. , 2012, , .		2
48	Graphene layer number determination from red-, green-, and blue-channel of optical images. , 2012, , .		0
49	Identification of Graphene Layer Numbers from Color Combination Contrast Image for Wide-Area Characterization. Japanese Journal of Applied Physics, 2012, 51, 06FD09.	0.8	2
50	Identification of Graphene Layer Numbers from Color Combination Contrast Image for Wide-Area Characterization. Japanese Journal of Applied Physics, 2012, 51, 06FD09.	0.8	5
51	Characterization of Low-Frequency Noise in Etched GaAs Nanowire Field-Effect Transistors Having SiNxGate Insulator. Japanese Journal of Applied Physics, 2012, 51, 06FE18.	0.8	8
52	Control of stochastic resonance response in a GaAsâ€based nanowire fieldâ€effect transistor. Physica Status Solidi C: Current Topics in Solid State Physics, 2011, 8, 384-386.	0.8	8
53	Programmable nano-switch array using SiN/GaAs interface traps on a GaAs nanowire network for reconfigurable BDD logic circuits. Microelectronic Engineering, 2011, 88, 2755-2758.	1.1	5
54	Characterization of Low-Frequency Noise in GaAs Nanowire Field-Effect Transistors Controlled by Schottky Wrap Gate. Japanese Journal of Applied Physics, 2011, 50, 06GF18.	0.8	4

#	Article	IF	Citations
55	Novel Nanowire-Based Flip-Flop Circuit Utilizing Gate-Controlled GaAs Three-Branch Nanowire Junctions. Japanese Journal of Applied Physics, 2011, 50, 06GF03.	0.8	2
56	Design, Fabrication and Characterization of GaAs-Based Interdigital-Gated HEMT Devices for Solid-State THz Wave Amplifiers. , 2011, , .		0
57	Formation of silicon nanocrystals embedded in high- \hat{l}° dielectric HfO2 and their application for charge storage. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2011, 29, 021018.	0.6	0
58	Silicon nanostructure solar cells with excellent photon harvesting. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2011, 29, 021014.	0.6	11
59	Electrode-contact enhancement in silicon nanowire-array-textured solar cells. Applied Physics Letters, 2011, 98, 143108.	1.5	21
60	Novel Nanowire-Based Flip-Flop Circuit Utilizing Gate-Controlled GaAs Three-Branch Nanowire Junctions. Japanese Journal of Applied Physics, 2011, 50, 06GF03.	0.8	5
61	Characterization of Low-Frequency Noise in GaAs Nanowire Field-Effect Transistors Controlled by Schottky Wrap Gate. Japanese Journal of Applied Physics, 2011, 50, 06GF18.	0.8	6
62	Compact Reconfigurable Binary-Decision-Diagram Logic Circuit on a GaAs Nanowire Network. Applied Physics Express, 2010, 3, 025002.	1.1	12
63	Silicon nanowire-array-textured solar cells for photovoltaic application. Journal of Applied Physics, 2010, 108, 094318.	1.1	56
64	Threshold-variation-enhanced adaptability of response in a nanowire field-effect transistor network. Applied Physics Letters, 2010, 96, .	1.5	36
65	Stochastic resonance nanodevices toward fluctuation-cooperative nanoelectronics., 2010,,.		0
66	Harmonic Responses in 2DEG AlGaAsâ^•GaAs HEMT Devices Due to Plasma Wave Interaction., 2010,,.		0
67	Voltage Transfer Characteristics in GaAs-Based Three-Branch Nanowire Junctions Controlled by Schottky Wrap Gates. Japanese Journal of Applied Physics, 2010, 49, 06GG03.	0.8	5
68	Enhancement of weak-signal response based on stochastic resonance in carbon nanotube field-effect transistors. Journal of Applied Physics, 2010, 108, .	1.1	29
69	Boolean Logic Gates Utilizing GaAs Three-Branch Nanowire Junctions Controlled by Schottky Wrap Gates. Japanese Journal of Applied Physics, 2009, 48, 06FD01.	0.8	12
70	Enhanced charge storage characteristics of silicon nanocrystals fabricated by electron-beam coevaporation of Si and SiOx(x=1â€,orâ€,2). Journal of Vacuum Science & Technology B, 2009, 27, 2462-2467.	1.3	0
71	Odd Harmonic Responses in Two-Dimensional AlGaAsâ^•GaAs HEMT Devices Due to Plasma Wave Interaction., 2009,,.		0
72	A binary-decision-diagram-based two-bit arithmetic logic unit on a GaAs-based regular nanowire network with hexagonal topology. Nanotechnology, 2009, 20, 245203.	1.3	15

#	Article	IF	CITATIONS
73	Analysis of Interactions between Drifting Plasma Waves in 2DEG Semiconductors and Electromagnetic Space Harmonic Waves using Three-Dimensional Transverse Magnetic Mode Method., 2009,,.		0
74	Multi-path Switching Device Utilizing a Multi-terminal Nanowire Junction for MDD-Based Logic Circuit., 2009, , .		0
75	Stochastic resonance in nanodevice parallel systems. , 2009, , .		1
76	Multiple-Valued Logic Gates Using Asymmetric Single-Electron Transistors. , 2009, , .		5
77	Investigation on Stochastic Resonance in Quantum Dot and Its Summing Network. International Journal of Nanotechnology and Molecular Computation, 2009, 1, 70-79.	0.3	9
78	Observation of first and third harmonic responses in two-dimensional AlGaAs/GaAs HEMT devices due to plasma wave interaction. Superlattices and Microstructures, 2008, 44, 754-760.	1.4	23
79	Study on Nonlinear Electrical Characteristics of GaAs-Based Three-Branch Nanowire Junctions Controlled by Schottky Wrap Gates. Japanese Journal of Applied Physics, 2008, 47, 4958-4964.	0.8	13
80	Effect of Size Reduction on Switching Characteristics in GaAs-Based Schottky-Wrap-Gate Quantum Wire Transistors. Japanese Journal of Applied Physics, 2008, 47, 3086-3090.	0.8	18
81	Fabrication and characterization of a GaAs-based three-terminal nanowire junction device controlled by double Schottky wrap gates. Applied Physics Letters, 2007, 90, 102104.	1.5	19
82	Mechanism of surface conduction in the vicinity of Schottky gates on AlGaN∕GaN heterostructures. Applied Physics Letters, 2007, 91, .	1.5	86
83	Multipath-switching device utilizing a GaAs-based multiterminal nanowire junction with size-controlled dual Schottky wrap gates. Applied Physics Letters, 2007, 90, 203504.	1.5	8
84	Surface-induced large side-gating phenomenon in GaAs quantum wire transistors and its removal by surface passivation using Si interface control layer. Applied Physics Letters, 2007, 90, 132124.	1.5	0
85	Novel Hybrid Voltage Controlled Ring Oscillators Using Single Electron and MOS Transistors. IEEE Nanotechnology Magazine, 2007, 6, 146-157.	1.1	28
86	Integration of interdigital-gated plasma wave device for proximity communication system application. Microelectronics Journal, 2007, 38, 1263-1267.	1.1	7
87	Novel structure of GaAs-based interdigital-gated HEMT plasma devices for solid-state THz wave amplifier. Microelectronics Journal, 2007, 38, 1268-1272.	1.1	8
88	Schottky Wrap Gate Control of Semiconductor Nanowire Networks for Novel Quantum Nanodevice-Integrated Logic Circuits Utilizing BDD Architecture. Journal of Computational and Theoretical Nanoscience, 2007, 4, 1120-1132.	0.4	8
89	Interdigital-Gated HEMT Structure for High Frequency Devices. , 2006, , .		2
90	Stochastic resonance among single-electron neurons on Schottky wrap-gate device. International Congress Series, 2006, 1291, 213-216.	0.2	6

#	Article	IF	Citations
91	Properties of a GaAs Single Electron Path Switching Node Device Using a Single Quantum Dot for Hexagonal BDD Quantum Circuits. Journal of Physics: Conference Series, 2006, 38, 104-107.	0.3	4
92	Dynamics and control of recombination process at semiconductor surfaces, interfaces and nano-structures. Solar Energy, 2006, 80, 629-644.	2.9	20
93	Gate control, surface leakage currents, and peripheral charging in AlGaN/GaN heterostructure field effect transistors having nanometer-scale schottky gates. Journal of Electronic Materials, 2006, 35, 568-575.	1.0	13
94	Device interference in GaAs quantum wire transistors and its suppression by surface passivation using Si interface control layer. Journal of Vacuum Science & Technology B, 2006, 24, 2060.	1.3	11
95	Embedded Nanowire Network Growth and Node Device Fabrication for GaAs-Based High-Density Hexagonal Binary Decision Diagram Quantum Circuits. Japanese Journal of Applied Physics, 2006, 45, 3614-3620.	0.8	3
96	TOWARD ULTRA-LOW POWER III-V QUANTUM LARGE SCALE INTEGRATED CIRCUITS FOR UBIQUITOUS NETWORK ERA. International Journal of High Speed Electronics and Systems, 2006, 16, 421-436.	0.3	5
97	TOWARD ULTRA-LOW POWER III-V QUANTUM LARGE SCALE INTEGRATED CIRCUITS FOR UBIQUITOUS NETWORK ERA. , 2006, , .		0
98	Tunneling Injection of Electrons at Nanometer-Scale Schottky Gate Edge of AlGaN/GaN Heterostructure Transistors and Its Computer Simulation. E-Journal of Surface Science and Nanotechnology, 2005, 3, 433-438.	0.1	5
99	Lateral tunneling injection and peripheral dynamic charging in nanometer-scale Schottky gates on AlGaN/GaN hetrosturucture transistors. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 2005, 23, 1799.	1.6	17
100	Large Modulation of Conductance in Interdigital-Gated HEMT Devices Due to Surface Plasma Wave Interactions. Japanese Journal of Applied Physics, 2005, 44, 2729-2734.	0.8	10
101	Removal of Side-gating Effects in GaAs Quantum Nanodevices with Nano-Schottky Gates by Surface Passivation Using Si Interface Control Layer. E-Journal of Surface Science and Nanotechnology, 2005, 3, 332-337.	0.1	2
102	Terahertz response of Schottky wrap gate-controlled quantum dots. Physica Status Solidi C: Current Topics in Solid State Physics, 2003, 0, 1329-1332.	0.8	1
103	Fabrication of GaAs-based integrated half and full adders by novel hexagonal BDD quantum circuit approach. Solid-State Electronics, 2003, 47, 199-204.	0.8	29
104	Effects of surface states on control characteristics of nano-meter scale Schottky gates formed on GaAs. Solid-State Electronics, 2003, 47, 323-331.	0.8	9
105	Fabrication of AlGaN/GaN Quantum Nanostructures by Methane-Based Dry Etching and Characterization of Their Electrical Properties. Japanese Journal of Applied Physics, 2003, 42, 2375-2381.	0.8	14
106	Control of Order Parameter during Growth of In0.5Ga0.5P/GaAs Heterostructures by Gas Source Molecular Beam Epitaxy Using Tertiarybutylphosphine. Japanese Journal of Applied Physics, 2003, 42, 2230-2236.	0.8	4
107	Sensing terahertz signals with III-V quantum nanostructures. , 2003, 4999, 96.		1
108	Novel Quantum Wire Branch-Switches for Binary Decision Diagram Logic Architecture Utilizing Schottky Wrap-Gate Control of GaAs/AlGaAs Nanowires. Japanese Journal of Applied Physics, 2002, 41, 2671-2674.	0.8	12

#	Article	IF	CITATIONS
109	Reactive Ion Beam Etching of GaN and AlGaN/GaN for Nanostructure Fabrication Using Methane-Based Gas Mixtures. Japanese Journal of Applied Physics, 2002, 41, 2689-2693.	0.8	11
110	Optimization and Interface Characterization of a Novel Oxide-Free Insulated Gate Structure for InP Having an Ultrathin Silicon Interface Control Layer. Japanese Journal of Applied Physics, 2002, 41, 1062-1066.	0.8	2
111	Surface passivation of epitaxial multilayer structures for InP-based high-speed devices by an ultrathin silicon layer. Electronics and Communications in Japan, 2002, 85, 17-28.	0.2	1
112	GaAs and InGaAs single electron hexagonal nanowire circuits based on binary decision diagram logic architecture. Physica E: Low-Dimensional Systems and Nanostructures, 2002, 13, 925-929.	1.3	10
113	Control of morphology and wire width in InGaAs ridge quantum wires grown by atomic hydrogen-assisted selective molecular beam epitaxy. Physica E: Low-Dimensional Systems and Nanostructures, 2002, 13, 1185-1189.	1.3	1
114	Scanned-probe topological and spectroscopic study of surface states on clean and Si-deposited GaAs (001)-c(4×4) surfaces. Applied Surface Science, 2002, 190, 269-274.	3.1	4
115	Ill–V quantum devices and circuits based on nanoscale Schottky gate control of hexagonal quantum wire networks. Applied Surface Science, 2002, 190, 176-183.	3.1	2
116	Gate control characteristics in GaAs nanometer-scale Schottky wrap gate structures. Applied Surface Science, 2002, 190, 242-246.	3.1	18
117	Gated photoluminescence study of oxide-free InP MIS structure having an ultrathin silicon interface control layer. Applied Surface Science, 2002, 190, 298-301.	3.1	2
118	Graph-based quantum logic circuits and their realization by novel GaAs multiple quantum wire branch switches utilizing Schottky wrap gates. Microelectronic Engineering, 2002, 63, 287-291.	1.1	10
119	Current transport and capacitance–voltage characteristics of GaAs and InP nanometer-sized Schottky contacts formed by in situ electrochemical process. Applied Surface Science, 2001, 175-176, 181-186.	3.1	25
120	Conductance gap anomaly in scanning tunneling spectra of MBE-Grown (0 0 1) surfaces of Ill–V compound semiconductors. Applied Surface Science, 2001, 175-176, 255-259.	3.1	6
121	Hexagonal binary decision diagram quantum logic circuits using Schottky in-plane and wrap-gate control of GaAs and InGaAs nanowires. Physica E: Low-Dimensional Systems and Nanostructures, 2001, 11, 149-154.	1.3	63
122	Electrical Properties of Nanometer-Sized Schottky Contacts for Gate Control of Ill–V Single Electron Devices and Quantum Devices. Japanese Journal of Applied Physics, 2001, 40, 2021-2025.	0.8	11
123	Quantum-Dot Logic Circuits Based on the Shared Binary-Decision Diagram. Japanese Journal of Applied Physics, 2001, 40, 4485-4488.	0.8	21
124	GaAs-Based Single Electron Transistors and Logic Inverters Utilizing Schottky Wrap-Gate Controlled Quantum Wires and Dots. Japanese Journal of Applied Physics, 2001, 40, 2029-2032.	0.8	5
125	Unpinning of Fermi level in nanometer-sized Schottky contacts on GaAs and InP. Applied Surface Science, 2000, 166, 92-96.	3.1	25
126	Electrical Properties of Nanometer-Sized Schottky Contacts on n-GaAs and n-InP Formed byin SituElectrochemical Process. Japanese Journal of Applied Physics, 2000, 39, 4609-4615.	0.8	13

#	Article	IF	CITATIONS
127	Chemical and Electrochemical Nanofabrication Processes for Schottky In-Plane Gate GaAs Single and Coupled Quantum Wire Transistors. Japanese Journal of Applied Physics, 2000, 39, 4651-4652.	0.8	O
128	Effects of gap states on scanning tunneling spectra observed on (110)- and (001)-oriented clean surfaces and ultrathin Si layer covered surfaces of GaAs prepared by molecular beam epitaxy. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 2000, 18, 2100.	1.6	27
129	Conductance oscillation characteristics of GaAs Schottky wrap-gate single-electron transistors. Physica B: Condensed Matter, 1999, 272, 88-91.	1.3	2
130	Electrochemical formation and characterization of Schottky in-plane and wrap gate structures for realization of GaAs- and InP-based quantum wires and dots. Applied Surface Science, 1998, 123-124, 335-338.	3.1	3
131	Computer Simulation and Experimental Characterization of Single Electron Transistors Based on Schottky Wrap Gate Control of 2DEG. Japanese Journal of Applied Physics, 1998, 37, 1584-1590.	0.8	3
132	Fabrication and Characterization of GaAs Single Electron Devices Having Single and Multiple Dots Based on Schottky In-Plane-Gate and Wrap-Gate Control of Two-Dimensional Electron Gas. Japanese Journal of Applied Physics, 1997, 36, 1678-1685.	0.8	58
133	Basic Control Characteristics of Novel Schottky In-Plane and Wrap Gate Structures Studied by Simulation and Transport Measurements in GaAs and InGaAs Quantum Wires. Japanese Journal of Applied Physics, 1997, 36, 4156-4160.	0.8	13
134	0.86 eV Platinum Schottky Barrier on Indium Phosphide by In Situ Electrochemical Process and Its Application to MESFETs. Japanese Journal of Applied Physics, 1996, 35, 1258-1263.	0.8	18
135	Electron Beam Induced Current Characterization of Novel GaAs Quantum Nanostructures Based on Potential Modulation of Two-Dimensional Electron Gas by Schottky In-Plane Gates. Japanese Journal of Applied Physics, 1996, 35, 6652-6658.	0.8	24
136	Fabrication and Characterization of Novel Lateral Surface Superlattice Structure Utilizing Schottky Barrier Height Control by Doped Silicon Interface Control Layers. Japanese Journal of Applied Physics, 1996, 35, 1340-1347.	0.8	4
137	Barrier Height Control and Current Transport in GaAs and InP Schottky Diodes Having An Ultrathin Silicon Interface Control Layer. , 1994, , 187-192.		0
138	Control of GaAs Schottky Barrier Height by Ultrathin Molecular beam epitaxy si interface control layer. Japanese Journal of Applied Physics, 1993, 32, 502-510.	0.8	21
139	Nearly Temperature-Independent Saturation Drain Current in a Multi-Mesa-Channel AlGaN/GaN High Electron Mobility Transistor. Applied Physics Express, 0, 1, 023001.	1.1	33
140	Stochastic Resonance in Schottky Wrap Gate-controlled GaAs Nanowire Field-Effect Transistors and Their Networks. Applied Physics Express, 0, 1, 083001.	1.1	61
141	Harmonic Responses In 2DEG AlGaAs/GaAs HEMT Devices Due To Plasma Wave Interactions. Jurnal Teknologi (Sciences and Engineering), 0, , .	0.3	0
142	Investigation on Stochastic Resonance in Quantum Dot and its Summing Network., 0,, 140-148.		0