Catherine J Pears

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7798936/publications.pdf

Version: 2024-02-01

56 papers

1,654 citations

331670 21 h-index 289244 40 g-index

57 all docs

57 docs citations

57 times ranked

1660 citing authors

#	Article	IF	CITATIONS
1	Linking DNA repair and cell cycle progression through serine ADP-ribosylation of histones. Nature Communications, 2022, 13, 185.	12.8	13
2	Microbe Profile: Dictyostelium discoideum: model system for development, chemotaxis and biomedical research. Microbiology (United Kingdom), 2021, 167, .	1.8	7
3	Methylation-directed acetylation of histone H3 regulates developmental sensitivity to histone deacetylase inhibition. Nucleic Acids Research, 2021, 49, 3781-3795.	14.5	9
4	Dictyostelium discoideum as a Model to Assess Genome Stability Through DNA Repair. Frontiers in Cell and Developmental Biology, 2021, 9, 752175.	3.7	6
5	Possible Involvement of the Nutrient and Energy Sensors mTORC1 and AMPK in Cell Fate Diversification in a Non-Metazoan Organism. Frontiers in Cell and Developmental Biology, 2021, 9, 758317.	3.7	4
6	Moving the Research Forward: The Best of British Biology Using the Tractable Model System Dictyostelium discoideum. Cells, 2021, 10, 3036.	4.1	2
7	A two-pore channel protein required for regulating mTORC1 activity on starvation. BMC Biology, 2020, 18, 8.	3.8	16
8	Human Platelet Protein Ubiquitylation and Changes following GPVI Activation. Thrombosis and Haemostasis, 2019, 119, 104-116.	3.4	28
9	Dictyostelium as a Model to Assess Site-Specific ADP-Ribosylation Events. Methods in Molecular Biology, 2018, 1813, 125-148.	0.9	2
10	Site-specific ADP-ribosylation of histone H2B in response to DNA double strand breaks. Scientific Reports, 2017, 7, 43750.	3.3	21
11	An enhanced C. elegans based platform for toxicity assessment. Scientific Reports, 2017, 7, 9839.	3.3	99
12	Expanding the yeast protein arginine methylome. Proteomics, 2015, 15, 3232-3243.	2.2	21
13	Emerging models for DNA repair: Dictyostelium discoideum as a model for nonhomologous end-joining. DNA Repair, 2014, 17, 121-131.	2.8	12
14	Investigation of DNA Repair Pathway Activity. Methods in Molecular Biology, 2013, 983, 295-310.	0.9	2
15	Nonhomologous end-joining promotes resistance to DNA damage in the absence of an ADP-ribosyltransferase that signals DNA single strand breaks. Journal of Cell Science, 2013, 126, 3452-61.	2.0	12
16	Dynamic acetylation of lysine-4-trimethylated histone H3 and H3 variant biology in a simple multicellular eukaryote. Nucleic Acids Research, 2012, 40, 7247-7256.	14.5	19
17	The role of ADP-ribosylation in regulating DNA double-strand break repair. Cell Cycle, 2012, 11, 48-56.	2.6	39
18	Targets downstream of Cdk8 in Dictyostelium development. BMC Developmental Biology, 2011, 11, 2.	2.1	4

#	Article	IF	CITATIONS
19	PARP regulates nonhomologous end joining through retention of Ku at double-strand breaks. Journal of Cell Biology, 2011, 194, 367-375.	5.2	79
20	Submaximal Inhibition of Protein Kinase C Restores ADP-induced Dense Granule Secretion in Platelets in the Presence of Ca2+. Journal of Biological Chemistry, 2011, 286, 21073-21082.	3.4	23
21	DNA double-strand break repair pathway choice in <i>Dictyostelium</i> . Journal of Cell Science, 2011, 124, 1655-1663.	2.0	24
22	Control of Cyclin C Levels during Development of Dictyostelium. PLoS ONE, 2010, 5, e10543.	2.5	7
23	Differential Roles of the PKC Novel Isoforms, PKCl̃ and PKCl̃μ, in Mouse and Human Platelets. PLoS ONE, 2008, 3, e3793.	2.5	37
24	Proteomic and Microarray Analyses of the Dictyostelium Zak1-GSK-3 Signaling Pathway Reveal a Role in Early Development. Eukaryotic Cell, 2007, 6, 245-252.	3.4	17
25	Distinct but critical roles for integrin ?IIb?3in platelet lamellipodia formation on fibrinogen, collagen-related peptide and thrombin. FEBS Journal, 2006, 273, 5032-5043.	4.7	27
26	DNA Damage Signalling and Repair in <i>Dictyostelium discoideum</i> . Cell Cycle, 2006, 5, 702-708.	2.6	21
27	DNA-PKcs-Dependent Signaling of DNA Damage in Dictyostelium discoideum. Current Biology, 2005, 15, 1880-1885.	3.9	39
28	Transcriptional Switch of the dia1 and impA Promoter during the Growth/Differentiation Transition. Eukaryotic Cell, 2005, 4, 1477-1482.	3.4	4
29	Developmental decisions in Dictyostelium discoideum. Developmental Biology, 2005, 284, 25-36.	2.0	60
30	A homologue of Cdk8 is required for spore cell differentiation in Dictyostelium. Developmental Biology, 2004, 271, 49-58.	2.0	12
31	Superoxide signalling required for multicellular development ofDictyostelium. Journal of Cell Science, 2003, 116, 3387-3397.	2.0	77
32	PKD: a new protein kinase C–dependent pathway in platelets. Blood, 2003, 101, 1392-1399.	1.4	23
33	Signalling events underlying platelet aggregation induced by the glycoprotein VI agonist convulxin. FEBS Journal, 2001, 268, 5242-5248.	0.2	49
34	Signalling components underlying platelet aggregation to a Ca 2+ ionophore and a phorbol ester. Platelets, 2001, 12, 476-485.	2.3	3
35	Protein Kinase C-α Is Essential for Ramos-BL B Cell Survival. Cellular Immunology, 1999, 196, 104-109.	3.0	21
36	Cell cycle-dependent regulation of early developmental genes. Biochimica Et Biophysica Acta - Molecular Cell Research, 1999, 1452, 296-302.	4.1	13

#	Article	IF	CITATIONS
37	Negative influence of RasG on chemoattractant-induced ERK2 phosphorylation in Dictyostelium. Biochimica Et Biophysica Acta - Molecular Cell Research, 1998, 1402, 1-5.	4.1	15
38	37 The role of protein kinase C in B cell apoptosis. Biochemical Society Transactions, 1998, 26, S336-S336.	3.4	0
39	38 Regulation of B cell apoptosis during the cell cycle. Biochemical Society Transactions, 1998, 26, S337-S337.	3.4	O
40	Chemoattractants induce tyrosine phosphorylation of ERK2 in <i>Dictyostelium</i> discoideum by diverse signalling pathways. Biochemical Journal, 1997, 324, 347-352.	3.7	21
41	47 Assay to determine the isoform specificity of protein kinase C inhibitors. Biochemical Society Transactions, 1997, 25, S591-S591.	3.4	4
42	48 Protein kinase C in Dictyostelium discoideum. Biochemical Society Transactions, 1997, 25, S592-S592.	3.4	0
43	Cells at the Center ofDictyosteliumAggregates Become Spores. Developmental Biology, 1997, 192, 564-571.	2.0	29
44	Isoform specificity of activators and inhibitors of protein kinase C \hat{l}^3 and \hat{l}' . FEBS Letters, 1997, 415, 101-108.	2.8	68
45	A protein kinase C-like activity involved in the chemotactic response of Dictyostelium discoideum. Lipids and Lipid Metabolism, 1997, 1349, 72-80.	2.6	5
46	Chemoattractants activate ERK2 in Dictyostelium discoideum by diverse signalling pathways. Biochemical Society Transactions, 1996, 24, 581S-581S.	3.4	0
47	Structure and function of the protein kinase C gene family. Journal of Biosciences, 1995, 20, 311-332.	1.1	25
48	Protein kinase C. Biochemical Society Transactions, 1992, 20, 415-418.	3.4	19
49	Protein kinase C-δand -É>: a functional appraisal. Biochemical Society Transactions, 1992, 20, 603-607.	3.4	12
50	Down-regulation of a kinase defective PKC-α. FEBS Letters, 1991, 284, 120-122.	2.8	35
51	Mutagenesis of the pseudosubstrate site of protein kinase C leads to activation. FEBS Journal, 1990, 194, 89-94.	0.2	135
52	Protein kinase C — a family affair. Molecular and Cellular Endocrinology, 1989, 65, 1-11.	3.2	288
53	Protein kinase C as a second messenger target. Biochemical Society Transactions, 1989, 17, 279-280.	3.4	5
54	Characterization of two divergently transcribedDictyostelium gene pairs and identification of G-rich sequence element lying between them with the characteristics of a basal promoter element. Genesis, 1988, 9, 455-468.	2.1	8

#	Article	IF	CITATIONS
55	Multiple copies of a G-rich element upstream of a cAMP-inducible Dictyostelium gene are necessary but not sufficient for efficient gene expression. Nucleic Acids Research, 1988, 16, 8467-8486.	14.5	57
56	Identification of a DNA sequence element required for efficient expression of a developmentally regulated and cAMP-inducible gene of <i>Dictyostelium discoideum</i> . EMBO Journal, 1987, 6, 195-200.	7.8	76