Margarita López-Torres

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7797819/publications.pdf

Version: 2024-02-01

293460 371746 1,734 81 24 37 citations g-index h-index papers 81 81 81 1217 docs citations citing authors all docs times ranked

#	Article	IF	Citations
1	Evaluation of the In Vitro and In Vivo Efficacy of Ruthenium Polypyridyl Compounds against Breast Cancer. International Journal of Molecular Sciences, 2021, 22, 8916.	1.8	3
2	Ru $<$ sup $>$ II $<$ /sup $>$ ($<$ i $>$ p $<$ /i $>$ -cymene) Compounds as Effective and Selective Anticancer Candidates with No Toxicity in Vivo. Inorganic Chemistry, 2018, 57, 13150-13166.	1.9	52
3	Straightforward Preparation Method for Complexes Bearing a Bidentate N-Heterocyclic Carbene To Introduce Undergraduate Students to Research Methodology. Journal of Chemical Education, 2017, 94, 1552-1556.	1.1	4
4	Preparation and characterization of terdentate [C,N,N] acetophenone and acetylpyridine hydrazone platinacycles: a DFT insight into the reaction mechanism. Dalton Transactions, 2017, 46, 16845-16860.	1.6	6
5	Dinuclear Ru ^{II} (bipy) ₂ Derivatives: Structural, Biological, and in Vivo Zebrafish Toxicity Evaluation. Inorganic Chemistry, 2017, 56, 7127-7144.	1.9	40
6	Preparation of Imidazolâ€2â€ylidene Carbene Palladacycles with Bi―and Tridentate Schiff Bases – Analyses of the Spectroscopic, Molecular Structure, and DFT Calculation Data. European Journal of Inorganic Chemistry, 2016, 2016, 422-431.	1.0	4
7	Heteroleptic mononuclear compounds of ruthenium(<scp>ii</scp>): synthesis, structural analyses, in vitro antitumor activity and in vivo toxicity on zebrafish embryos. Dalton Transactions, 2016, 45, 19127-19140.	1.6	45
8	Dinuclear cyclometallated platinum(III) complexes. Relationship between molecular structure and crystal packing. Polyhedron, 2014, 67, 160-170.	1.0	9
9	Novel palladacycle N-heterocyclic carbene complexes with bidentate [C,N] and terdentate [C,N,N] and [C,N,O] Schiff bases. Synthesis, characterization and crystal structure analysis. Journal of Organometallic Chemistry, 2014, 772-773, 192-201.	0.8	8
10	Novel Bidentate [<i>N</i> , <i>S</i>) Palladacycle Metalloligands. ¹ H– ¹⁵ N HMBC as a Decisive NMR Technique for the Structural Characterization of Palladium–Rhodium and Palladium–Palladium Bimetallic Complexes. Organometallics, 2014, 33, 3265-3274.	1.1	15
11	Spectroscopic and solid state characterization of bimetallic terdentate [C,N,S] thiosemicarbazone Palladium(II) metallacycles with bridging and chelating [P,P] diphosphine ligands. Journal of Organometallic Chemistry, 2013, 740, 83-91.	0.8	6
12	Versatile reactivity of dioxaneferrocenylimine palladacycles by controlled acid hydrolysis. Crystal and molecular structure of $[Pd\{CpFe[i-5-C5H2\{CH(OMe)2\}C(H)N-2,4,6-Me3C6H2]\}(Cl)(PPh2Et)]$. Journal of Organometallic Chemistry, 2013, 740, 92-97.	0.8	2
13	Versatile nuclephilic Michael addition to chelated (Ph2P)2CCH2 (vdpp) in Schiff base cyclometallated palladium(II) compounds: C–C, C–O and C–N bond formation, dinuclear palladacycles and geometrical isomerism. Journal of Organometallic Chemistry, 2012, 720, 30-37.	0.8	3
14	A One-Pot Self-Assembly Reaction To Prepare a Supramolecular Palladium(II) Cyclometalated Complex: An Undergraduate Organometallic Laboratory Experiment. Journal of Chemical Education, 2012, 89, 156-158.	1.1	10
15	Mononuclear cycloplatinated complexes derived from 2-tolylpyridine with N-donor ligands: Reactivity and structural characterization. Polyhedron, 2012, 33, 13-18. Functionalized Palladacycles with Crown Ether Rings Derived from Terdentate	1.0	10
16	[<i>C</i> , <i>N</i> , <i>N</i> ,Ci>N,Ci <n< i="">,Ci>N,Ci<n< i="">,Ci<n< i="">,C</n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<></n<>	1.1 >>\sub>2	9 !.
17	Dimetalated Orown Ether Schiff Base Palladacycles. Influence of the Carbon Chain Length on the Coordination Mode of Bidentate Phosphines. Crystal and Molecular Structure of the Novel Complex [Pd ₂ {1,4-[C(H)a•N{9,10-(C ₈ H ₁₆ O ₅)C ₆ H _{Organometallics. 2011. 30. 386-395.}		
18	Crystal packing in a solvent-free or chloroform-solvated dinuclear platinum(III) organometallic complex. Polyhedron, 2011, 30, 2444-2450.	1.0	11

#	Article	IF	CITATIONS
19	Cyclometallated Palladium Diphosphane Compounds Derived from the Chiral Ligand (S)-PhCH(Me)NMe2. Michael Addition Reactions to the Vinylidene Double Bond. European Journal of Inorganic Chemistry, 2011, 2011, 1824-1832.	1.0	7
20	Mononuclear and tetranuclear palladacycles with terdentate [C,N,N] and [C,N,O] Schiff base ligands. Câ€"H versus Câ€"Br activation reactions. Inorganica Chimica Acta, 2011, 370, 89-97.	1.2	5
21	Reactivity of C(sp2)-Pd and C(sp3)-Pd bonded palladacycles with diphosphines. Crystal and molecular structure of the novel A-frame complex [{Pd[2,5-Me2C6H2C(H) N(2,4,6-Me3C6H2)-C6]}2(Î1/4-Ph2PCH2PPh2)2(Î1/4-Cl)][PF6]. Journal of Organometallic Chemistry, 2011, 696, 764-771.	0.8	3
22	Versatile Behavior of the Schiff Base Ligand 2,5-Me ₂ C ₆ H ₂ Control (H)â•N(2,4,6-Me ₃ C ₆ H ₂ toward Cyclometalation Reactions: C(sp ² ,phenyl)â^3H vs C(sp ³ ,methyl)â^3H Activation. Organometallics, 2010, 29, 3303-3307.	ub>) 1.1	26
23	Cyclometallated [C,N,O] Complexes as Metalloligands: Synthesis and Structural Characterisation of New Diâ€, Triâ€, Tetra―and Pentanuclear Heterometallic Complexes. European Journal of Inorganic Chemistry, 2009, 2009, 3071-3083.	1.0	19
24	Seeking new metalloligands: Synthesis and reactivity of palladacycles with pyridine and pyrimidine rings. Polyhedron, 2009, 28, 2679-2683.	1.0	4
25	Synthesis and characterization of new heterocyclic Schiff base palladacycles: Ring activation through N-oxide formation. Polyhedron, 2009, 28, 3607-3613.	1.0	4
26	Cyclometallated complexes derived from pyrimidin- and pyridazinehydrazones: Structural evidence of intermolecular "chelate metal ringâ€ï€â€"Ï€ interactions. Journal of Organometallic Chemistry, 2009, 694, 2234-2245.	0.8	15
27	Synthesis and reactivity of new functionalized Pd(II) cyclometallated complexes with boronic esters. Journal of Organometallic Chemistry, 2009, 694, 3597-3607.	0.8	4
28	Crown Ether Palladacycles as Metalloligands: Suitable Precursors for Tetranuclear Mixed Transition/Non-Transition Metal Complexes. Organometallics, 2009, 28, 6657-6665.	1.1	13
29	Activation of C–H and C–Br bonds in cyclopalladation reactions of Schiff base ligands: Influence of the benzylidene ring substituents. Journal of Organometallic Chemistry, 2008, 693, 685-700.	0.8	20
30	Synthesis, characterization and crystal structures of cyclometallated palladium (II) compounds containing difunctional ligands with [P,P], [As,As], [N,N], [P,As], [P,N] and [P,O] donor atoms. Journal of Organometallic Chemistry, 2008, 693, 3655-3667.	0.8	12
31	Tetranuclear Complexes of Pd ^{II} with Tridentate [<i>C</i> , <i>N</i> , <i>O</i>] and [<i>O</i> , <i>N</i> , <i>O</i>] Ligands: Synthesis, Reactivity and Structural Isomerism. European Journal of Inorganic Chemistry, 2007, 2007, 5408-5418.	1.0	32
32	Reactivity of tetranuclear complexes of Pd(II) with potentially homo- and heterobidentate ligands. Polyhedron, 2007, 26, 4567-4572.	1.0	9
33	New developments in the studies of the reactivity of cyclometallated palladium(II) compounds with homo- ([P,P],[As,As]) and heterobidentate ([P,N],[P,O]) ligands. Journal of Organometallic Chemistry, 2007, 692, 4197-4208.	0.8	9
34	Cycloplatination of Thiosemicarbazones Derived from Furane. Crystal and Molecular Structure of [{Pt[(OC ₄ H ₂)C(Me)=NN=C(S)NHEt]} ₂ {μâ€Ph ₂ P(CH _{2Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2007, 633, 1875-1882.}	2 0/s ub>)<	:s u b>2
35	Synthesis, characterization and solid state structures of thiosemicarbazone palladacycles: Influence of hydrogen bonding in the molecular arrangement. Journal of Organometallic Chemistry, 2006, 691, 2891-2901.	0.8	18
36	Cyclometallation of phenylhydrazones: Synthesis, reactivity, crystal structure analysis and novel trinuclear palladium(II) cyclometallated compounds with $[C,N,N\hat{a}\in^2]$ terdentate ligands. Journal of Organometallic Chemistry, 2005, 690, 3669-3679.	0.8	11

#	Article	IF	CITATIONS
37	Synthesis, reactivity and characterization of cyclometallated palladium(II) compounds derived from pinacolone-N,N-dimethylhydrazone. Inorganica Chimica Acta, 2003, 342, 185-192.	1.2	5
38	New palladium(II) cyclometallated compounds derived from trans-cinnamalylideneimines via Cî—,H activation of an sp2-aliphatic carbon atom. Inorganica Chimica Acta, 2003, 342, 145-150.	1.2	11
39	Functionalized cyclopaliadated compounds with bidentate Group 15 donor atom ligands: the crystal		

#	Article	IF	CITATIONS
55	Coupling reactions of manganese(I) cyclometallated compounds derived from heterocyclic N-donor ligands with alkynes. Journal of Organometallic Chemistry, 2002, 656, 270-273.	0.8	18
56	Cî—,Br versus Cî—,H bond activation in palladium(II) cyclopalladated compounds Journal of Organometallic Chemistry, 2002, 663, 239-248.	0.8	10
57	Cyclopalladated compounds derived from a [C,N,S] terdentate ligand: synthesis, characterization and reactivity. Crystal and molecular structures of [Pd{2-ClC6H3C(H)NCH2CH2SMe}(Cl)] and [{Pd[2-ClC6H3C(H)NCH2CH2SMe]}2{Âμ-Ph2P(CH2)4PPh2}][CF3SO3]2. New Journal of Chemistry, 2002, 26, 105-112.	1.4	34
58	Mono- and Dinuclear Five-coordinate Cyclometalated Palladium(II) Compounds. Inorganic Chemistry, 2001, 40, 4583-4587.	1.9	22
59	Cyclometalated Palladium(II) Fragments as Building Blocks in the Construction of New Heteronuclear Metalomacrocycles. Organometallics, 2001, 20, 1350-1353.	1.1	78
60	Directed regioselectivity in cyclometallated palladium(II) compounds of N-benzylidenebenzylamines. Crystal and molecular structure of [Pd{3,4-(OCH2O)C6H2C(H)r~NCH2[3,4-(OCH2O)C6H3]-C2,N}(Î1/4-O2CMe)]2. Polyhedron, 2001, 20, 2925-293	1.0 3.	15
61	Novel structures of cyclometallated complexes of palladium(II) derived from terdentate ligands. Crystal and molecular structure of [Pd{C6H4C(H)i`NCH2CH2CH2NMe2}(X)] (X=Cl, Br, I). Journal of Organometallic Chemistry, 2001, 620, 8-19.	0.8	34
62	Novel cyclopalladated ferrocenyl Schiff base compounds with bridging and chelating diphosphines. Crystal and molecular structure of $[Pd[(\hat{i}-5-C5H5)Fe(\hat{i}-5-C5H3)C(H)\hat{i}N-2,4,6-Me3C6H2]}{Ph2P(CH2)nPPh2\hat{i}_,P,P}][PF6] (n=1, 2).$ Journal of Organometallic Chemistry, 2001, 637-639, 577-585.	0.8	15
63	The key role of sulfur in thiosemicarbazone compounds. Crystal and molecular structure of [Pd{4-MeOC6H4C(Me)i~NNi~C(S)NHPh}2]. Journal of Organometallic Chemistry, 2001, 623, 176-184.	0.8	20
64	Synthesis and Single-Crystal X-ray Diffraction Studies of New Cyclometallated Phenylimidazole Palladium(II) Compounds. European Journal of Inorganic Chemistry, 2000, 2000, 2055-2062.	1.0	24
65	Cyclopalladation of Schiff base ligands: crystal and molecular structures of [Pd-?{?2,4-(OCH3)2C6H2C(H)?N?(C6H11)-C6,N???} (�-O2CCH3)]2 and [Pd-?{3,4-(OCH3)2C6H2C(H)?		

#	Article	IF	CITATIONS
73	Reactivity of functionalised cyclometallated complexes of palladium(II). Crystal and molecular structure of [Pd{3-(CHO)C6H3C(H)î~NCy}(Br)(PEtPh2)]. Journal of Organometallic Chemistry, 1998, 556, 31-39.	0.8	18
74	Synthesis of complexes of platinum (II) with C,N,N \hat{a} e²-terdentate Schiff base donor ligands. Crystal and molecular structure of [Pt{3-Me-4-MeOC6H2C(H) \hat{r} NCH2CH2NMe2}(Me)]. Journal of Organometallic Chemistry, 1998, 566, 93-101.	0.8	41
75	Cyclometallated complexes of palladium(II) with a C, N, $N\hat{a}\in^2$ terdentate Schiff base donor ligand. Oxidative addition of an arylî—,chlorine bond to palladium(O). Journal of Organometallic Chemistry, 1997, 532, 171-180.	0.8	46
76	Cyclometallated complexes of palladium(II) with 1-methyl-2-phenylimidazole and tertiary diphosphines. Crystal and molecular structure of $[Pd[o-C6H4C=NC(H)=C(H)NMe](Ph2PCH(Me)PPh2-P,P)][PF6]$. Journal of Organometallic Chemistry, 1997, 547, 297-307.	0.8	19
77	Synthesis and characterization of cyclometallated complexes of palladium(II) and manganese(I) with bidentate Schiff bases. Journal of Organometallic Chemistry, 1996, 506, 165-174.	0.8	56
78	Cyclometallated compounds of palladium(II) with a 2,4-pentanedionate: the X-ray crystal structure of. Journal of Organometallic Chemistry, 1996, 510, 51-56.	0.8	3
79	Dinuclear cyclometallated complexes of PdII with diphosphines. X-ray crystal structure of. Journal of Organometallic Chemistry, 1996, 511, 129-138.	0.8	39
80	Reactivity of tetranuclear cyclometallated palladium(II) halide-bridged complexes of bis(N-benzylidene)-1,4-phenylenediamines. Journal of Organometallic Chemistry, 1994, 479, 37-46.	0.8	25
81	Cyclometallated complexes of PdII and MnI with N,N-terephthalylidenebis(cyclohexylamine). Journal of Organometallic Chemistry, 1993, 445, 287-294.	0.8	54