Paola Battilani

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7797163/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Climate change and food safety: An emerging issue with special focus on Europe. Food and Chemical Toxicology, 2009, 47, 1009-1021.	3.6	437
2	Aflatoxin B1 contamination in maize in Europe increases due to climate change. Scientific Reports, 2016, 6, 24328.	3.3	410
3	Studies on Aspergillus section Flavi isolated from maize in northern Italy. International Journal of Food Microbiology, 2007, 113, 330-338.	4.7	207
4	Occurrence of Ochratoxin A–Producing Fungi in Grapes Grown in Italy. Journal of Food Protection, 2003, 66, 633-636.	1.7	196
5	Review on pre- and post-harvest management of peanuts to minimize aflatoxin contamination. Food Research International, 2014, 62, 11-19.	6.2	174
6	Ochratoxin A Production and Amplified Fragment Length Polymorphism Analysis of Aspergillus carbonarius , Aspergillus tubingensis , and Aspergillus niger Strains Isolated from Grapes in Italy. Applied and Environmental Microbiology, 2006, 72, 680-685.	3.1	169
7	Rapid Detection of Kernel Rots and Mycotoxins in Maize by Near-Infrared Reflectance Spectroscopy. Journal of Agricultural and Food Chemistry, 2005, 53, 8128-8134.	5.2	155
8	European research on ochratoxin A in grapes and wine. International Journal of Food Microbiology, 2006, 111, S2-S4.	4.7	151
9	Ochratoxin a in Grapes and Wine. European Journal of Plant Pathology, 2002, 108, 639-643.	1.7	133
10	Occurrence and Co-Occurrence of Mycotoxins in Cereal-Based Feed and Food. Microorganisms, 2020, 8, 74.	3.6	109
11	Penicillium Populations in Dry-Cured Ham Manufacturing Plants. Journal of Food Protection, 2007, 70, 975-980.	1.7	107
12	Review of predictive models for Fusarium head blight and related mycotoxin contamination in wheat. Food and Chemical Toxicology, 2009, 47, 927-931.	3.6	107
13	Modelling climate change impacts on mycotoxin contamination. World Mycotoxin Journal, 2016, 9, 717-726.	1.4	106
14	Black aspergilli and ochratoxin A in grapes in Italy. International Journal of Food Microbiology, 2006, 111, S53-S60.	4.7	105
15	Epidemiology of Toxin-Producing Fungi and Ochratoxin a Occurrence in Grape. European Journal of Plant Pathology, 2003, 109, 715-722.	1.7	90
16	Development of a molecular detection and differentiation system for ochratoxin A producing Penicillium species and its application to analyse the occurrence of Penicillium nordicum in cured meats. International Journal of Food Microbiology, 2006, 107, 39-47.	4.7	83
17	Effect of aw and CO2 level on Aspergillus flavus growth and aflatoxin production in high moisture maize post-harvest. International Journal of Food Microbiology, 2008, 122, 109-113.	4.7	83
18	Ochratoxin A production byAspergillus carbonarius on some grape varieties grown in Italy. Journal of the Science of Food and Agriculture, 2004, 84, 1736-1740.	3.5	81

#	Article	IF	CITATIONS
19	AFLA-maize, a mechanistic model for Aspergillus flavus infection and aflatoxin B1 contamination in maize. Computers and Electronics in Agriculture, 2013, 94, 38-46.	7.7	81
20	Logistic Regression Modeling of Cropping Systems To Predict Fumonisin Contamination in Maize. Journal of Agricultural and Food Chemistry, 2008, 56, 10433-10438.	5.2	78
21	Mapping of Aspergillus Section Nigri in Southern Europe and Israel based on geostatistical analysis. International Journal of Food Microbiology, 2006, 111, S72-S82.	4.7	76
22	Phyllosphere grapevine yeast Aureobasidium pullulans reduces Aspergillus carbonarius (sour rot) incidence in wine-producing vineyards in Greece. Biological Control, 2008, 46, 158-165.	3.0	75
23	Biological Control Products for Aflatoxin Prevention in Italy: Commercial Field Evaluation of Atoxigenic Aspergillus flavus Active Ingredients. Toxins, 2018, 10, 30.	3.4	72
24	Effect of Ochratoxin A-Producing Aspergilli on Stilbenic Phytoalexin Synthesis in Grapes. Journal of Agricultural and Food Chemistry, 2003, 51, 6151-6157.	5.2	65
25	Pre―and Postharvest Strategies to Minimize Mycotoxin Contamination in the Rice Food Chain. Comprehensive Reviews in Food Science and Food Safety, 2019, 18, 441-454.	11.7	63
26	Fusarium head blight and mycotoxins in wheat: prevention and control strategies across the food chain. World Mycotoxin Journal, 2019, 12, 333-355.	1.4	61
27	Impact of Fungi Co-occurrence on Mycotoxin Contamination in Maize During the Growing Season. Frontiers in Microbiology, 2019, 10, 1265.	3.5	58
28	Overview of Fungi and Mycotoxin Contamination in Capsicum Pepper and in Its Derivatives. Toxins, 2019, 11, 27.	3.4	58
29	The Mycotox Charter: Increasing Awareness of, and Concerted Action for, Minimizing Mycotoxin Exposure Worldwide. Toxins, 2018, 10, 149.	3.4	57
30	Biocontrol of Penicillium nordicum Growth and Ochratoxin A Production by Native Yeasts of Dry Cured Ham. Toxins, 2012, 4, 68-82.	3.4	55
31	Co-occurrence of type A and B trichothecenes and zearalenone in wheat grown in northern Italy over the years 2009–2011. Food Additives and Contaminants: Part B Surveillance, 2014, 7, 273-281.	2.8	53
32	Role of Maize Hybrids and Their Chemical Composition in <i>Fusarium</i> Infection and Fumonisin Production. Journal of Agricultural and Food Chemistry, 2012, 60, 3800-3808.	5.2	51
33	Cultural and Genetic Approaches to Manage Aflatoxin Contamination: Recent Insights Provide Opportunities for Improved Control. Phytopathology, 2018, 108, 1024-1037.	2.2	51
34	Atoxigenic Aspergillus flavus endemic to Italy for biocontrol of aflatoxins in maize. BioControl, 2015, 60, 125-134.	2.0	49
35	Effect of environmental conditions on spore production by Fusarium verticillioides, the causal agent of maize ear rot. European Journal of Plant Pathology, 2009, 123, 159-169.	1.7	48
36	Perspectives on Global Mycotoxin Issues and Management From the MycoKey Maize Working Group. Plant Disease, 2021, 105, 525-537.	1.4	47

#	Article	IF	CITATIONS
37	Environmental factors modify carbon nutritional patterns and niche overlap between Aspergillus flavus and Fusarium verticillioides strains from maize. International Journal of Food Microbiology, 2009, 130, 213-218.	4.7	46
38	Defense Responses to Mycotoxin-Producing Fungi <i>Fusarium proliferatum, F. subglutinans</i> , and <i>Aspergillus flavus</i> in Kernels of Susceptible and Resistant Maize Genotypes. Molecular Plant-Microbe Interactions, 2015, 28, 546-557.	2.6	46
39	Aflatoxin B1 contamination in maize related to the aridity index in North Italy. World Mycotoxin Journal, 2008, 1, 449-456.	1.4	45
40	Use of Competitive Filamentous Fungi as an Alternative Approach for Mycotoxin Risk Reduction in Staple Cereals: State of Art and Future Perspectives. Toxins, 2019, 11, 701.	3.4	45
41	Structure of an Aspergillus flavus population from maize kernels in northern Italy. International Journal of Food Microbiology, 2013, 162, 1-7.	4.7	44
42	Autochthonous yeasts as potential biocontrol agents in dry-cured meat products. Food Control, 2014, 46, 160-167.	5.5	44
43	Dynamic of water activity in maize hybrids is crucial for fumonisin contamination in kernels. Journal of Cereal Science, 2011, 54, 467-472.	3.7	43
44	Field control of Fusarium ear rot, <i>Ostrinia nubilalis</i> (Hübner), and fumonisins in maize kernels. Pest Management Science, 2011, 67, 458-465.	3.4	43
45	Key Clobal Actions for Mycotoxin Management in Wheat and Other Small Grains. Toxins, 2021, 13, 725.	3.4	43
46	Oxylipins from both pathogen and host antagonize jasmonic acidâ€mediated defence via the 9â€lipoxygenase pathway in <i>Fusarium verticillioides</i> infection of maize. Molecular Plant Pathology, 2018, 19, 2162-2176.	4.2	42
47	Modelling, predicting and mapping the emergence of aflatoxins in cereals in the EU due to climate change. EFSA Supporting Publications, 2012, 9, 223E.	0.7	41
48	Fumonisins and their modified forms, a matter of concern in future scenario?. World Mycotoxin Journal, 2016, 9, 727-739.	1.4	41
49	Mycotoxin mixtures in food and feed: holistic, innovative, flexible risk assessment modelling approach:. EFSA Supporting Publications, 2020, 17, 1757E.	0.7	38
50	Biological Interactions to Select Biocontrol Agents Against Toxigenic Strains of Aspergillus flavus and Fusarium verticillioides from Maize. Mycopathologia, 2009, 167, 287-295.	3.1	37
51	LDS1-produced oxylipins are negative regulators of growth, conidiation and fumonisin synthesis in the fungal maize pathogen Fusarium verticillioides. Frontiers in Microbiology, 2014, 5, 669.	3.5	37
52	Resistant and susceptible maize genotypes activate different transcriptional responses against Fusarium verticillioides. Physiological and Molecular Plant Pathology, 2012, 77, 52-59.	2.5	36
53	The impact of seasonal weather variation on mycotoxins: maize crop in 2014 in northern Italy as a case study. World Mycotoxin Journal, 2020, 13, 25-36.	1.4	36
54	Effects of temperature and water activity on FUM2 and FUM21 gene expression and fumonisin B production in Fusarium verticillioides. European Journal of Plant Pathology, 2012, 134, 685-695.	1.7	33

Paola Battilani

#	Article	IF	CITATIONS
55	Comparison of temperature and moisture requirements for sporulation of Aspergillus flavus sclerotia on natural and artificial substrates. Fungal Biology, 2012, 116, 637-642.	2.5	33
56	Modeling Growth and Toxin Production of Toxigenic Fungi Signaled in Cheese under Different Temperature and Water Activity Regimes. Toxins, 2017, 9, 4.	3.4	33
57	An electronic nose supported by an artificial neural network for the rapid detection of aflatoxin B1 and fumonisins in maize. Food Control, 2021, 123, 107722.	5.5	33
58	Scientific information on mycotoxins and natural plant toxicants. EFSA Supporting Publications, 2009, 6, 24E.	0.7	32
59	Predicted Aflatoxin B1 Increase in Europe Due to Climate Change: Actions and Reactions at Global Level. Toxins, 2021, 13, 292.	3.4	32
60	Influence of abiotic parameters on ochratoxin A production by a Penicillium nordicum strain in dry-cured meat model systems. Food Control, 2010, 21, 1739-1744.	5.5	31
61	Evaluation of broad spectrum sources of resistance to Fusarium verticillioides and advanced maize breeding lines. World Mycotoxin Journal, 2011, 4, 43-51.	1.4	31
62	Dynamics of fungi and related mycotoxins during cereal storage in silo bags. Food Control, 2013, 30, 280-287.	5.5	31
63	Phomopsins: an overview of phytopathological and chemical aspects, toxicity, analysis and occurrence. World Mycotoxin Journal, 2011, 4, 345-359.	1.4	31
64	Growth and aflatoxin production of an Italian strain of Aspergillus flavus: influence of ecological factors and nutritional substrates. World Mycotoxin Journal, 2011, 4, 425-432.	1.4	29
65	Recent advances in modeling the risk of mycotoxin contamination in crops. Current Opinion in Food Science, 2016, 11, 10-15.	8.0	29
66	Aflatoxin and fumonisin contamination of yam flour from markets in Nigeria. Food Control, 2012, 25, 53-58.	5.5	27
67	Organic vs conventional farming: Differences in infection by mycotoxin-producing fungi on maize and wheat in Northern and Central Italy. Crop Protection, 2015, 72, 22-30.	2.1	27
68	Effect of Lime-Induced Leaf Chlorosis on Ochratoxin A, <i>trans-</i> Resveratrol, and ε-Viniferin Production in Grapevine (Vitis vinifera L.) Berries Infected by Aspergillus carbonarius. Journal of Agricultural and Food Chemistry, 2008, 56, 2085-2089.	5.2	26
69	Maize lipids play a pivotal role in the fumonisin accumulation. World Mycotoxin Journal, 2015, 8, 87-97.	1.4	26
70	Predictive modelling of aflatoxin contamination to support maize chain management. World Mycotoxin Journal, 2015, 8, 161-170.	1.4	26
71	Survey of Penicillia associated with Italian grana cheese. International Journal of Food Microbiology, 2017, 246, 25-31.	4.7	26
72	Pest Management and Ochratoxin A Contamination in Grapes: A Review. Toxins, 2020, 12, 303.	3.4	26

#	Article	IF	CITATIONS
73	CERCOPRI: a forecasting model for primary infections of cercospora leaf spot of sugarbeet. EPPO Bulletin, 1991, 21, 527-531.	0.8	25
74	Effect of solute and matric potential on in vitro growth and sporulation of strains from a new population of Aspergillus flavus isolated in Italy. Fungal Ecology, 2008, 1, 102-106.	1.6	25
75	OTA-Grapes: A Mechanistic Model to Predict Ochratoxin A Risk in Grapes, a Step beyond the Systems Approach. Toxins, 2015, 7, 3012-3029.	3.4	25
76	Aflatoxin in maize, a multifaceted answer of Aspergillus flavus governed by weather, host-plant and competitor fungi. Journal of Cereal Science, 2016, 70, 256-262.	3.7	24
77	Aspergillus flavus and Fusarium verticillioides Interaction: Modeling the Impact on Mycotoxin Production. Frontiers in Microbiology, 2019, 10, 2653.	3.5	24
78	Climate Change Impact on Aflatoxin Contamination Risk in Malawi's Maize Crops. Frontiers in Sustainable Food Systems, 2020, 4, .	3.9	24
79	Fatty acid esters of fumonisins: first evidence of their presence in maize. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 2013, 30, 1606-1613.	2.3	22
80	AFLA-PISTACHIO: Development of a Mechanistic Model to Predict the Aflatoxin Contamination of Pistachio Nuts. Toxins, 2020, 12, 445.	3.4	21
81	Transcriptional changes in developing maize kernels in response to fumonisin-producing and nonproducing strains of Fusarium verticillioides. Plant Science, 2013, 210, 183-192.	3.6	20
82	An in silico structural approach to characterize human and rainbow trout estrogenicity of mycotoxins: Proof of concept study using zearalenone and alternariol. Food Chemistry, 2020, 312, 126088.	8.2	20
83	Molecular Characterization of Diaporthe Species Associated With Hazelnut Defects. Frontiers in Plant Science, 2020, 11, 611655.	3.6	20
84	Cornmeal and starch influence the dynamic of fumonisin B, A and C production and masking in Fusarium verticillioides and F. proliferatum. International Journal of Food Microbiology, 2013, 166, 21-27.	4.7	18
85	Fusarium verticillioides and maize interaction in vitro: relationship between oxylipin cross-talk and fumonisin synthesis. World Mycotoxin Journal, 2013, 6, 343-351.	1.4	18
86	Detection and discrimination between ochratoxin producer and non-producer strains of Penicillium nordicum on a ham-based medium using an electronic nose. Mycotoxin Research, 2011, 27, 29-35.	2.3	17
87	FUM and BIK gene expression contribute to describe fumonisin and bikaverin synthesis in Fusarium verticillioides. International Journal of Food Microbiology, 2012, 160, 94-98.	4.7	17
88	Cross-validation of predictive models for deoxynivalenol in wheat at harvest. World Mycotoxin Journal, 2013, 6, 389-397.	1.4	17
89	The Route of Mycotoxins in the Grape Food Chain. American Journal of Enology and Viticulture, 2020, 71, 89-104.	1.7	17

90 Risk Assessment and Safety Evaluation of Mycotoxins in Fruits. , 2008, , 1-26.

16

#	Article	IF	CITATIONS
91	Starch and thermal treatment, important factors in changing detectable fumonisins in maize post-harvest. Journal of Cereal Science, 2015, 61, 78-85.	3.7	16
92	Polyphasic identification of Penicillia and Aspergilli isolated from Italian grana cheese. Food Microbiology, 2018, 73, 137-149.	4.2	16
93	Risk assessment and management in practice: ochratoxin in grapes and wine. , 2004, , 244-261.		15
94	Chemical and biological control of Fusarium species involved in garlic dry rot at early crop stages. European Journal of Plant Pathology, 2021, 160, 575-587.	1.7	15
95	Spatial Distribution of Ochratoxin A in Vineyard and Sampling Design To Assess Must Contamination. Journal of Food Protection, 2006, 69, 884-890.	1.7	14
96	Fumonisins B, A and C profile and masking in Fusarium verticillioides strains on fumonisin-inducing and maize-based media. International Journal of Food Microbiology, 2012, 159, 93-100.	4.7	14
97	Lipids as Key Markers in Maize Response to Fumonisin Accumulation. Journal of Agricultural and Food Chemistry, 2019, 67, 4064-4070.	5.2	13
98	Machine Learning for Predicting Mycotoxin Occurrence in Maize. Frontiers in Microbiology, 2021, 12, 661132.	3.5	13
99	Mycotoxins in maize: mitigation actions, with a chain management approach. Phytopathologia Mediterranea, 2020, 59, 5-28.	1.3	13
100	Estimating the potential development of Diaporthe helianthi epidemics in Italy*. EPPO Bulletin, 2003, 33, 427-431.	0.8	12
101	Hydro- and thermotimes for conidial germination kinetics of the ochratoxigenic species Aspergillus carbonarius inÂvitro, on grape skin and grape flesh. Fungal Biology, 2014, 118, 996-1003.	2.5	12
102	Infection with toxigenic and atoxigenic strains of Aspergillus flavus induces different transcriptional signatures in maize kernels. Journal of Plant Interactions, 2017, 12, 21-30.	2.1	12
103	Fate of mycotoxins and related fungi in the anaerobic digestion process. Bioresource Technology, 2018, 265, 554-557.	9.6	12
104	Ecology of Diaporthe eres, the causal agent of hazelnut defects. PLoS ONE, 2021, 16, e0247563.	2.5	12
105	Foreword: mycotoxins in a changing world. World Mycotoxin Journal, 2016, 9, 647-651.	1.4	11
106	Modelling Fungal Growth, Mycotoxin Production and Release in Grana Cheese. Microorganisms, 2020, 8, 69.	3.6	11
107	Fungi Associated with Garlic During the Cropping Season, with Focus on Fusarium proliferatum and F. oxysporum. Plant Health Progress, 2021, 22, 37-46.	1.4	11
108	Mycotoxin levels in maize produced in northern Italy in 2008 as influenced by growing location and FAO class of hybrid. World Mycotoxin Journal, 2012, 5, 409-418.	1.4	10

#	Article	IF	CITATIONS
109	Open Field Study of Some Zea mays Hybrids, Lipid Compounds and Fumonisins Accumulation. Toxins, 2015, 7, 3657-3670.	3.4	10
110	5-n-alkylresorcinols but not hydroxycinnamic acids are directly related to a lower accumulation of deoxynivalenol and its glucoside in Triticum spp. Genotypes with different ploidity levels. Journal of Cereal Science, 2019, 85, 214-220.	3.7	10
111	Careful with That Axe, Gene, Genome Perturbation after a PEG-Mediated Protoplast Transformation in Fusarium verticillioides. Toxins, 2017, 9, 183.	3.4	9
112	Monitoring the incidence of dry rot caused by Fusarium proliferatum in garlic at harvest and during storage. Postharvest Biology and Technology, 2021, 173, 111407.	6.0	9
113	Fusarium verticillioides and Aspergillus flavus Co-Occurrence Influences Plant and Fungal Transcriptional Profiles in Maize Kernels and In Vitro. Toxins, 2021, 13, 680.	3.4	9
114	Development of early maturity maize hybrids for resistance to Fusarium and Aspergillus ear rots and their associated mycotoxins. World Mycotoxin Journal, 2020, 13, 459-471.	1.4	9
115	Oleoyl and linoleoyl esters of fumonisin B1 are differently produced by Fusarium verticillioides on maize and rice based media. International Journal of Food Microbiology, 2016, 217, 79-84.	4.7	8
116	Modelling the sporulation of some fungi associated with cheese, at different temperature and water activity regimes. International Journal of Food Microbiology, 2018, 278, 52-60.	4.7	8
117	MycoKey Round Table Discussions of Future Directions in Research on Chemical Detection Methods, Genetics and Biodiversity of Mycotoxins. Toxins, 2018, 10, 109.	3.4	8
118	A short geostatistical study of the three-dimensional spatial structure of fumonisins in stored maize. World Mycotoxin Journal, 2010, 3, 95-103.	1.4	8
119	Overall Exposure of European Adult Population to Mycotoxins by Statistically Modelled Biomonitoring Data. Toxins, 2021, 13, 695.	3.4	7
120	Food mycology - a multifaceted approach to fungi and food. World Mycotoxin Journal, 2008, 1, 223-224.	1.4	5
121	A true scale study of the maize chain with focus on free and hidden fumonisins and related fungi. World Mycotoxin Journal, 2014, 7, 297-304.	1.4	5
122	Environmental Conditions Affecting Ochratoxin A during Solar Drying of Grapes: The Case of Tunnel and Open Air-Drying. Toxins, 2021, 13, 400.	3.4	5
123	Introductory note. International Journal of Food Microbiology, 2006, 111, S1.	4.7	4
124	Risk assessment of the entry of PantoeaÂstewartii subsp. stewartii on maize seed imported by the EU from the USA. EFSA Journal, 2019, 17, e05851.	1.8	4
125	The potential for aflatoxin predictive risk modelling in sub-Saharan Africa: a review. World Mycotoxin Journal, 2022, 15, 101-118.	1.4	4
126	Epidemiology of toxin-producing fungi and ochratoxin A occurrence in grape. , 2003, , 715-722.		4

8

#	Article	IF	CITATIONS
127	Lipid Signaling Modulates the Response to Fumonisin Contamination and Its Source, Fusarium verticillioides, in Maize. Frontiers in Plant Science, 2021, 12, 701680.	3.6	4
128	Nutrition and Ageing. Studies in Health Technology and Informatics, 2014, 203, 112-21.	0.3	2
129	A sampling protocol to detect latent infections in potato tubers. EPPO Bulletin, 2005, 35, 477-481.	0.8	1
130	Controlling ochratoxin A in the vineyard and winery. , 2010, , 515-546.		1
131	Controlling ochratoxin A in the vineyard and winery. , 2022, , 625-660.		0