
Jovin Hasjim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/77971/publications.pdf Version: 2024-02-01

Ιονικι Ηλειικά

#	Article	IF	CITATIONS
1	Using buckwheat starch to produce slowlyÂdigestible biscuits with good palatability. Cereal Chemistry, 2022, 99, 1166-1177.	1.1	5
2	Health benefits of docosahexaenoic acid and its bioavailability: A review. Food Science and Nutrition, 2021, 9, 5229-5243.	1.5	55
3	The size dependence of the average number of branches in amylose. Carbohydrate Polymers, 2019, 223, 115134.	5.1	17
4	The Role of Pullulanase in Starch Biosynthesis, Structure, and Thermal Properties by Studying Sorghum with Increased Pullulanase Activity. Starch/Staerke, 2019, 71, 1900072.	1.1	9
5	Molecular rearrangement of waxy and normal maize starch granules during in vitro digestion. Carbohydrate Polymers, 2016, 139, 10-19.	5.1	25
6	Roles of GBSSI and SSIIa in determining amylose fine structure. Carbohydrate Polymers, 2015, 127, 264-274.	5.1	59
7	Establishing whether the structural feature controlling the mechanical properties of starch films is molecular or crystalline. Carbohydrate Polymers, 2015, 117, 262-270.	5.1	28
8	Effects of grain milling on starch structures and flour/starch properties. Starch/Staerke, 2014, 66, 15-27.	1.1	119
9	Effects of Rice Variety and Growth Location in Cambodia on Grain Composition and Starch Structure. Rice Science, 2014, 21, 47-58.	1.7	14
10	Structural Changes of Starch Molecules in Barley Grains During Germination. Cereal Chemistry, 2014, 91, 431-437.	1.1	27
11	Variation in Amylose Fine Structure of Starches from Different Botanical Sources. Journal of Agricultural and Food Chemistry, 2014, 62, 4443-4453.	2.4	134
12	Two-dimensional macromolecular distributions reveal detailed architectural features in high-amylose starches. Carbohydrate Polymers, 2014, 113, 539-551.	5.1	43
13	Shear degradation of molecular, crystalline, and granular structures of starch during extrusion. Starch/Staerke, 2014, 66, 595-605.	1.1	109
14	Freeze-Drying Changes the Structure and Digestibility of B-Polymorphic Starches. Journal of Agricultural and Food Chemistry, 2014, 62, 1482-1491.	2.4	113
15	Extraction, isolation and characterisation of phytoglycogen from su-1 maize leaves and grain. Carbohydrate Polymers, 2014, 101, 423-431.	5.1	38
16	Structures of octenylsuccinylated starches: Effects on emulsions containing β-carotene. Carbohydrate Polymers, 2014, 112, 85-93.	5.1	42
17	Improving human health through understanding the complex structure of glucose polymers. Analytical and Bioanalytical Chemistry, 2013, 405, 8969-8980.	1.9	38
18	Molecular structure of starch in grains is not affected by common dwarfing genes in rice (<i>sd1</i>) and sorghum (<i>dw3</i>). Starch/Staerke, 2013, 65, 822-830.	1.1	3

Jονίν Ηασιμ

#	Article	IF	CITATIONS
19	Barley genotype expressing "stay-green―like characteristics maintains starch quality of the grain during water stress condition. Journal of Cereal Science, 2013, 58, 414-419.	1.8	38
20	The importance of amylose and amylopectin fine structures for starch digestibility in cooked rice grains. Food Chemistry, 2013, 136, 742-749.	4.2	287
21	Effect of octenylsuccinic anhydride modification on β-amylolysis of starch. Carbohydrate Polymers, 2013, 97, 9-17.	5.1	30
22	Milling of rice grains: Effects of starch/flour structures on gelatinization and pasting properties. Carbohydrate Polymers, 2013, 92, 682-690.	5.1	137
23	Effects of lipids on enzymatic hydrolysis and physical properties of starch. Carbohydrate Polymers, 2013, 92, 120-127.	5.1	233
24	Insights into Sorghum Starch Biosynthesis from Structure Changes Induced by Different Growth Temperatures. Cereal Chemistry, 2013, 90, 223-230.	1.1	24
25	What Is Being Learned About Starch Properties from Multiple‣evel Characterization. Cereal Chemistry, 2013, 90, 312-325.	1.1	59
26	Milling of rice grains: The roles of starch structures in the solubility and swelling properties of rice flour. Starch/Staerke, 2012, 64, 631-645.	1.1	53
27	Amylose content in starches: Toward optimal definition and validating experimental methods. Carbohydrate Polymers, 2012, 88, 103-111.	5.1	196
28	Inhibition of Azoxymethane-Induced Preneoplastic Lesions in the Rat Colon by a Cooked Stearic Acid Complexed High-Amylose Cornstarch. Journal of Agricultural and Food Chemistry, 2011, 59, 9700-9708.	2.4	44
29	Milling of Rice Grains. The Degradation on Three Structural Levels of Starch in Rice Flour Can Be Independently Controlled during Grinding. Journal of Agricultural and Food Chemistry, 2011, 59, 3964-3973.	2.4	144
30	Physicochemical and Structural Properties of Maize and Potato Starches as a Function of Granule Size. Journal of Agricultural and Food Chemistry, 2011, 59, 10151-10161.	2.4	130
31	Effect of a gibberellin-biosynthesis inhibitor treatment on the physicochemical properties of sorghum starch. Journal of Cereal Science, 2011, 53, 328-334.	1.8	51
32	Cryo-milling of starch granules leads to differential effects on molecular size and conformation. Carbohydrate Polymers, 2011, 84, 1133-1140.	5.1	68
33	Extraction and dissolution of starch from rice and sorghum grains for accurate structural analysis. Carbohydrate Polymers, 2010, 82, 14-20.	5.1	136
34	Characterization of a Novel Resistant‣tarch and Its Effects on Postprandial Plasma lucose and Insulin Responses. Cereal Chemistry, 2010, 87, 257-262.	1.1	226
35	In Vivo and In Vitro Starch Digestion: Are Current in Vitro Techniques Adequate?. Biomacromolecules, 2010, 11, 3600-3608.	2.6	127
36	Production of Resistant Starch by Extrusion Cooking of Acidâ€Modified Normalâ€Maize Starch. Journal of Food Science, 2009, 74, C556-62.	1.5	82

Jovin Hasjim

#	Article	IF	CITATIONS
37	Kernel Composition, Starch Structure, and Enzyme Digestibility of <i>opaque-2</i> Maize and Quality Protein Maize. Journal of Agricultural and Food Chemistry, 2009, 57, 2049-2055.	2.4	82
38	Synthesis, structure, and thermophysical and mechanical properties of new polymers prepared by the cationic copolymerization of corn oil, styrene, and divinylbenzene. Journal of Applied Polymer Science, 2003, 90, 1830-1838.	1.3	89
39	Structure and function of starch from advanced generations of new corn lines. Carbohydrate Polymers, 2003, 54, 305-319.	5.1	50