
Gadi Rothenberg

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7796806/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Biodegradable Plastics: Standards, Policies, and Impacts. ChemSusChem, 2021, 14, 56-72.	6.8	186
2	An Anionâ€Exchange Membrane Fuel Cell Containing Only Abundant and Affordable Materials. Energy Technology, 2021, 9, 2000909.	3.8	46
3	Enhancing CO2 plasma conversion using metal grid catalysts. Journal of Applied Physics, 2021, 129, .	2.5	14
4	Molybdenum Oxide Supported on Ti ₃ AlC ₂ is an Active Reverse Water–Gas Shift Catalyst. ACS Sustainable Chemistry and Engineering, 2021, 9, 4957-4966.	6.7	15
5	Enhancing catalytic epoxide ring-opening selectivity using surface-modified Ti ₃ C ₂ T _x MXenes. 2D Materials, 2021, 8, 035003.	4.4	15
6	Ruthenium on Alkaliâ€Exfoliated Ti ₃ (Al _{0.8} Sn _{0.2})C ₂ MAX Phase Catalyses Reduction of 4â€Nitroaniline with Ammonia Borane. ChemCatChem, 2021, 13, 3470-3478.	3.7	6
7	A membrane-free flow electrolyzer operating at high current density using earth-abundant catalysts for water splitting. Nature Communications, 2021, 12, 4143.	12.8	73
8	A high-temperature anion-exchange membrane fuel cell with a critical raw material-free cathode. Chemical Engineering Journal Advances, 2021, 8, 100153.	5.2	25
9	Surface oxidation of Ti ₃ C ₂ T _x enhances the catalytic activity of supported platinum nanoparticles in ammonia borane hydrolysis. 2D Materials, 2021, 8, 015001.	4.4	17
10	Understanding the roles of amorphous domains and oxygen-containing groups of nitrogen-doped carbon in oxygen reduction catalysis: toward superior activity. Inorganic Chemistry Frontiers, 2020, 7, 177-185.	6.0	19
11	Assembling Palladium and Cuprous Oxide Nanoclusters into Single Quantum Dots for the Electrocatalytic Oxidation of Formaldehyde, Ethanol, and Glucose. ACS Applied Nano Materials, 2020, 3, 10176-10182.	5.0	6
12	Covalent structured catalytic materials containing single-atom metal sites with controllable spatial and chemical properties: concept and application. Catalysis Science and Technology, 2020, 10, 6694-6700.	4.1	2
13	Conversion of CO2by non- thermal inductively-coupled plasma catalysis. Chinese Journal of Chemical Physics, 2020, 33, 243-251.	1.3	6
14	CO ₂ Hydrogenation at Atmospheric Pressure and Low Temperature Using Plasma-Enhanced Catalysis over Supported Cobalt Oxide Catalysts. ACS Sustainable Chemistry and Engineering, 2020, 8, 17397-17407.	6.7	56
15	Butane Dry Reforming Catalyzed by Cobalt Oxide Supported on Ti ₂ AlC MAX Phase. ChemSusChem, 2020, 13, 6401-6408.	6.8	26
16	An experimental approach for controlling confinement effects at catalyst interfaces. Chemical Science, 2020, 11, 11024-11029.	7.4	24
17	Designing Circular Waste Management Strategies: The Case of Organic Waste in Amsterdam. Advanced Sustainable Systems, 2020, 4, 2000023.	5.3	6
18	Dry Reforming of Methane under Mild Conditions Using Radio Frequency Plasma. Energy Technology, 2020. 8, 1900886.	3.8	17

#	Article	IF	CITATIONS
19	Self-Exfoliated Synthesis of Transition Metal Phosphate Nanolayers for Selective Aerobic Oxidation of Ethyl Lactate to Ethyl Pyruvate. ACS Catalysis, 2020, 10, 3958-3967.	11.2	17
20	Beyond Lithium-Based Batteries. Materials, 2020, 13, 425.	2.9	47
21	Retention of organics and degradation of micropollutants in municipal wastewater using impregnated ceramics. Clean Technologies and Environmental Policy, 2020, 22, 689-700.	4.1	3
22	A Simple and Efficient Device and Method for Measuring the Kinetics of Gasâ€Producing Reactions. Angewandte Chemie, 2019, 131, 17433-17436.	2.0	5
23	A Simple and Efficient Device and Method for Measuring the Kinetics of Gasâ€Producing Reactions. Angewandte Chemie - International Edition, 2019, 58, 17273-17276.	13.8	13
24	Efficient oxygen reduction to H2O2 in highly porous manganese and nitrogen co-doped carbon nanorods enabling electro-degradation of bulk organics. Carbon, 2019, 155, 643-649.	10.3	19
25	A Critical Look at Direct Catalytic Hydrogenation of Carbon Dioxide to Olefins. ChemSusChem, 2019, 12, 3896-3914.	6.8	119
26	Selective Aerobic Oxidation of Lactate to Pyruvate Catalyzed by Vanadiumâ€Nitrogenâ€Doped Carbon Nanosheets. ChemCatChem, 2019, 11, 3381-3387.	3.7	18
27	Efficient Separation of Ethanol–Methanol and Ethanol–Water Mixtures Using ZIF-8 Supported on a Hierarchical Porous Mixed-Oxide Substrate. ACS Applied Materials & Interfaces, 2019, 11, 21126-21136.	8.0	26
28	A simple synthesis of symmetric phthalocyanines and their respective perfluoro and transitionâ€metal complexes. Applied Organometallic Chemistry, 2019, 33, e4872.	3.5	18
29	Air Pollution in Europe. ChemSusChem, 2019, 12, 164-172.	6.8	72
30	Plasma Assisted Catalytic Conversion of CO2 and H2O Over Ni/Al2O3 in a DBD Reactor. Plasma Chemistry and Plasma Processing, 2019, 39, 109-124.	2.4	40
31	Understanding the oxidative dehydrogenation of ethyl lactate to ethyl pyruvate over vanadia/titania. Catalysis Science and Technology, 2018, 8, 3737-3747.	4.1	31
32	Cooperative Surfaceâ€Particle Catalysis: The Role of the "Active Doughnut―in Catalytic Oxidation. ChemCatChem, 2018, 10, 2119-2124.	3.7	15
33	Selective CO ₂ adsorption in water-stable alkaline-earth based metal–organic frameworks. Inorganic Chemistry Frontiers, 2018, 5, 541-549.	6.0	11
34	Designing effective solid catalysts for biomass conversion: aerobic oxidation of ethyl lactate to ethyl pyruvate. Green Chemistry, 2018, 20, 1866-1873.	9.0	22
35	Highly Selective Oxidation of Ethyl Lactate to Ethyl Pyruvate Catalyzed by Mesoporous Vanadia–Titania. ACS Catalysis, 2018, 8, 2365-2374.	11.2	38
36	Facile Synthesis of a Novel Hierarchical ZSMâ€5 Zeolite: A Stable Acid Catalyst for Dehydrating Glycerol to Acrolein. ChemCatChem, 2018, 10, 211-221.	3.7	31

#	Article	IF	CITATIONS
37	Selective Catalytic Oxidation of Cyclohexene with Molecular Oxygen: Radical Versus Nonradical Pathways. ChemCatChem, 2018, 10, 1035-1041.	3.7	42
38	The Ti ₃ AlC ₂ MAX Phase as an Efficient Catalyst for Oxidative Dehydrogenation of nâ€Butane. Angewandte Chemie, 2018, 130, 1501-1506.	2.0	25
39	The Ti ₃ AlC ₂ MAX Phase as an Efficient Catalyst for Oxidative Dehydrogenation of nâ€Butane. Angewandte Chemie - International Edition, 2018, 57, 1485-1490.	13.8	61
40	Enhancing the performance of 3D porous N-doped carbon in oxygen reduction reaction and supercapacitor via boosting the meso-macropore interconnectivity using the "exsolved― dual-template. Carbon, 2018, 129, 293-300.	10.3	34
41	Coordination polymers from alkaline-earth nodes and pyrazine carboxylate linkers. Dalton Transactions, 2018, 47, 10071-10079.	3.3	12
42	Understanding Oxygen Activation on Metal- and Nitrogen-Codoped Carbon Catalysts. ACS Catalysis, 2018, 8, 8618-8629.	11.2	34
43	Tuning of Conversion and Optical Emission by Electron Temperature in Inductively Coupled CO ₂ Plasma. Journal of Physical Chemistry C, 2018, 122, 19338-19347.	3.1	26
44	The surface evolution of La0.4Sr0.6TiO3+ \hat{l} anode in solid oxide fuel cells: Understanding the sulfur-promotion effect. Journal of Power Sources, 2017, 343, 127-134.	7.8	14
45	Lignin Depolymerisation and Lignocellulose Fractionation by Solvated Electrons in Liquid Ammonia. ChemSusChem, 2017, 10, 1022-1032.	6.8	15
46	Dissolving Lignin in Water through Enzymatic Sulfation with Aryl Sulfotransferase. ChemSusChem, 2017, 10, 2267-2273.	6.8	17
47	One-Pot Selective Conversion of Hemicellulose to Xylitol. Organic Process Research and Development, 2017, 21, 165-170.	2.7	36
48	Sustainable Separations of C ₄ â€Hydrocarbons by Using Microporous Materials. ChemSusChem, 2017, 10, 3947-3963.	6.8	94
49	Highly Selective Hydrogenation of Levulinic Acid to Î ³ -Valerolactone Over Ru/ZrO2 Catalysts. Catalysis Letters, 2017, 147, 1744-1753.	2.6	44
50	Dual-mode humidity detection using a lanthanide-based metal–organic framework: towards multifunctional humidity sensors. Chemical Communications, 2017, 53, 4465-4468.	4.1	84
51	Developing hierarchically porous MnO _x /NC hybrid nanorods for oxygen reduction and evolution catalysis. Green Chemistry, 2017, 19, 2793-2797.	9.0	57
52	Plasmaâ€Assisted Synthesis of Monodispersed and Robust Ruthenium Ultrafine Nanocatalysts for Organosilane Oxidation and Oxygen Evolution Reactions. ChemCatChem, 2017, 9, 4159-4163.	3.7	11
53	Designing bifunctional alkene isomerization catalysts using predictive modelling. Catalysis Science and Technology, 2017, 7, 4842-4851.	4.1	12
54	Feedstocks and analysis: general discussion. Faraday Discussions, 2017, 202, 497-519.	3.2	2

#	Article	IF	CITATIONS
55	Bio-based materials: general discussion. Faraday Discussions, 2017, 202, 121-139.	3.2	3
56	Bio-based chemicals: general discussion. Faraday Discussions, 2017, 202, 227-245.	3.2	0
57	Conversion technologies: general discussion. Faraday Discussions, 2017, 202, 371-389.	3.2	0
58	Revisiting Hansen Solubility Parameters by Including Thermodynamics. ChemPhysChem, 2017, 18, 2999-3006.	2.1	47
59	Converting Waste Toilet Paper into Electricity: A Firstâ€Stage Technoeconomic Feasibility Study. Energy Technology, 2017, 5, 2189-2197.	3.8	8
60	Plantics-GX: a biodegradable and cost-effective thermoset plastic that is 100% plant-based. Faraday Discussions, 2017, 202, 111-120.	3.2	9
61	Boosting the Supercapacitance of Nitrogenâ€Doped Carbon by Tuning Surface Functionalities. ChemSusChem, 2017, 10, 4018-4024.	6.8	38
62	Silica-supported sulfonic acids as recyclable catalyst for esterification of levulinic acid with stoichiometric amounts of alcohols. Beilstein Journal of Organic Chemistry, 2016, 12, 2173-2180.	2.2	27
63	A Simple Synthesis of an Nâ€Doped Carbon ORR Catalyst: Hierarchical Micro/Meso/Macro Porosity and Graphitic Shells. Chemistry - A European Journal, 2016, 22, 501-505.	3.3	86
64	An effective modular process for biodiesel manufacturing using heterogeneous catalysis. Catalysis Science and Technology, 2016, 6, 6097-6108.	4.1	23
65	The evolution of hierarchical porosity in self-templated nitrogen-doped carbons and its effect on oxygen reduction electrocatalysis. RSC Advances, 2016, 6, 80398-80407.	3.6	46
66	A rational synthesis of hierarchically porous, N-doped carbon from Mg-based MOFs: understanding the link between nitrogen content and oxygen reduction electrocatalysis. Physical Chemistry Chemical Physics, 2016, 18, 20778-20783.	2.8	42
67	Lanthanide-Based Metal Organic Frameworks: Synthetic Strategies and Catalytic Applications. ACS Catalysis, 2016, 6, 6063-6072.	11.2	178
68	Cooperative Catalysis for Selective Alcohol Oxidation with Molecular Oxygen. Chemistry - A European Journal, 2016, 22, 12307-12311.	3.3	42
69	Developing a Thermal- and Coking-Resistant Cobalt–Tungsten Bimetallic Anode Catalyst for Solid Oxide Fuel Cells. ACS Catalysis, 2016, 6, 4630-4634.	11.2	26
70	Ru/TiO2-catalysed hydrogenation of xylose: the role of the crystal structure of the support. Catalysis Science and Technology, 2016, 6, 577-582.	4.1	65
71	Predicting the performance of oxidation catalysts using descriptor models. Catalysis Science and Technology, 2016, 6, 125-133.	4.1	26
72	A novel one-dimensional chain built of vanadyl ions and pyrazine-2,5-dicarboxylate. Dalton Transactions, 2015, 44, 11380-11387.	3.3	8

#	Article	IF	CITATIONS
73	High proton conductivity in cyanide-bridged metal–organic frameworks: understanding the role of water. Journal of Materials Chemistry A, 2015, 3, 22347-22352.	10.3	61
74	Discovery and Understanding of the Ambient-Condition Degradation of Doped Barium Cerate Proton-Conducting Perovskite Oxide in Solid Oxide Fuel Cells. Journal of the Electrochemical Society, 2015, 162, F1408-F1414.	2.9	31
75	Catalytic acetoxylation of lactic acid to 2-acetoxypropionic acid, en route to acrylic acid. RSC Advances, 2015, 5, 4103-4108.	3.6	20
76	Lignin solubilisation and gentle fractionation in liquid ammonia. Green Chemistry, 2015, 17, 325-334.	9.0	100
77	Catalytic routes towards acrylic acid, adipic acid and ε-caprolactam starting from biorenewables. Green Chemistry, 2015, 17, 1341-1361.	9.0	228
78	Redes metalorgânicas e suas aplicações em catálise. Quimica Nova, 2014, 37, 123-133.	0.3	12
79	Applying Topological and Economical Principles in Catalyst Design: New Alumina–Cobalt Core–Shell Catalysts. Topics in Catalysis, 2014, 57, 1419-1424.	2.8	4
80	Oxidative Dehydrogenation of n-Butane: Activity and Kinetics Over VO x /Al2O3 Catalysts. Topics in Catalysis, 2014, 57, 1400-1406.	2.8	20
81	Micropore characteristics of organic matter pools in cemented and nonâ€eemented podzolic horizons. European Journal of Soil Science, 2014, 65, 763-773.	3.9	7
82	Highly Selective Water Adsorption in a Lanthanum Metal–Organic Framework. Chemistry - A European Journal, 2014, 20, 7922-7925.	3.3	58
83	Enhanced Heterogeneous Catalytic Conversion of Furfuryl Alcohol into Butyl Levulinate. ChemSusChem, 2014, 7, 835-840.	6.8	74
84	Tuning the nanopore structure and separation behavior of hybrid organosilica membranes. Microporous and Mesoporous Materials, 2014, 185, 224-234.	4.4	54
85	Environmentally Benign Bifunctional Solid Acid and Base Catalysts. Industrial & Engineering Chemistry Research, 2014, 53, 18722-18728.	3.7	13
86	Heterogeneous catalyst discovery using 21st century tools: a tutorial. RSC Advances, 2014, 4, 5963.	3.6	52
87	Glycerol Esters from Real Waste Cooking Oil Using a Robust Solid Acid Catalyst. Topics in Catalysis, 2014, 57, 1545-1549.	2.8	10
88	Understanding the solar-driven reduction of CO ₂ on doped ceria. RSC Advances, 2014, 4, 16456-16463.	3.6	27
89	Titania-catalysed oxidative dehydrogenation of ethyl lactate: effective yet selective free-radical oxidation. Green Chemistry, 2014, 16, 3358-3363.	9.0	41
90	Organosilane oxidation by water catalysed by large gold nanoparticles in a membrane reactor. Catalysis Science and Technology, 2014, 4, 2156-2160.	4.1	12

#	Article	IF	CITATIONS
91	The pros and cons of lignin valorisation in an integrated biorefinery. RSC Advances, 2014, 4, 25310-25318.	3.6	273
92	Adsorption of hexane isomers on MFI type zeolites at ambient temperature: Understanding the aluminium content effect. Microporous and Mesoporous Materials, 2013, 170, 26-35.	4.4	30
93	Predicting adsorption on metals: simple yet effective descriptors for surface catalysis. Physical Chemistry Chemical Physics, 2013, 15, 4436.	2.8	33
94	Sieving di-branched from mono-branched and linear alkanes using ZIF-8: experimental proof and theoretical explanation. Physical Chemistry Chemical Physics, 2013, 15, 8795.	2.8	76
95	Hemicellulose hydrolysis catalysed by solid acids. Catalysis Science and Technology, 2013, 3, 2057.	4.1	82
96	Kinetics of propane dehydrogenation over Pt–Sn/Al ₂ O ₃ . Catalysis Science and Technology, 2013, 3, 962-971.	4.1	46
97	Catalytic cleavage of lignin β-O-4 link mimics using copper on alumina and magnesia–alumina. Green Chemistry, 2013, 15, 768.	9.0	91
98	Efficient alkyne homocoupling catalysed by copper immobilized on functionalized silica. Applied Organometallic Chemistry, 2013, 27, 23-27.	3.5	27
99	Synthesis, characterization and testing of a new V2O5/Al2O3–MgO catalyst for butane dehydrogenation and limonene oxidation. Dalton Transactions, 2013, 42, 5546.	3.3	33
100	Efficient three-component coupling catalysed by mesoporous copper–aluminum based nanocomposites. Green Chemistry, 2013, 15, 1238.	9.0	88
101	De Novo Design of Nanostructured Iron–Cobalt Fischer–Tropsch Catalysts. Angewandte Chemie - International Edition, 2013, 52, 4397-4401.	13.8	103
102	Modeling Catalyst Preparation: The Structure of Impregnated–Dried Copper Chloride on γ-Alumina at Low Loadings. ACS Catalysis, 2013, 3, 1545-1554.	11.2	20
103	Titelbild: De Novo Design of Nanostructured Iron-Cobalt Fischer-Tropsch Catalysts (Angew. Chem.) Tj ETQq1 1 0.	784314 rg 2.0	gBT /Overlock
104	Development of New Systems of Nano-Disperse Pt-(2%Pt-Ce0.9W0.1O2)/C Electrocatalysts Tolerant to Carbon Monoxide (CO) for PEMFC Anodes. ECS Transactions, 2012, 43, 185-189.	0.5	0
105	Exploring the Activated State of Cu/ZnO(0001)–Zn, a Model Catalyst for Methanol Synthesis. Journal of Physical Chemistry C, 2012, 116, 19335-19341.	3.1	24
106	Understanding the redox behaviour of PbCrO4 and its application in selective hydrogen combustion. Dalton Transactions, 2012, 41, 12289.	3.3	6
107	New tricks by very old dogs: predicting the catalytic hydrogenation of HMF derivatives using Slater-type orbitals. Catalysis Science and Technology, 2012, 2, 2456.	4.1	17
108	Sulfated zirconia as a robust superacid catalyst for multiproduct fatty acid esterification. Catalysis Science and Technology, 2012, 2, 1500.	4.1	50

#	Article	IF	CITATIONS
109	Transferable basis sets of numerical atomic orbitals. Physical Review B, 2012, 85, .	3.2	15
110	Selective Autooxidation of Ethanol over Titaniaâ€Supported Molybdenum Oxide Catalysts: Structure and Reactivity. Advanced Synthesis and Catalysis, 2012, 354, 1327-1336.	4.3	61
111	A facile building-block synthesis of multifunctional lanthanide MOFs. Journal of Materials Chemistry, 2011, 21, 15544.	6.7	43
112	Bimetallic catalysts for the Fischer–Tropsch reaction. Green Chemistry, 2011, 13, 1950.	9.0	104
113	Reductive Dealkylation of Anisole and Phenetole: Towards Practical Lignin Conversion. European Journal of Organic Chemistry, 2011, 2011, 5246-5249.	2.4	18
114	Mesoporous Silica with Siteâ€Isolated Amine and Phosphotungstic Acid Groups: A Solid Catalyst with Tunable Antagonistic Functions for Oneâ€Pot Tandem Reactions. Angewandte Chemie - International Edition, 2011, 50, 9615-9619.	13.8	143
115	Back Cover: Mesoporous Silica with Siteâ€Isolated Amine and Phosphotungstic Acid Groups: A Solid Catalyst with Tunable Antagonistic Functions for Oneâ€Pot Tandem Reactions (Angew. Chem. Int. Ed.) Tj ETQq1	1 0378843	14 r gBT /Ove
116	Novel and Effective Copper–Aluminum Propane Dehydrogenation Catalysts. Chemistry - A European Journal, 2011, 17, 12254-12256.	3.3	34
117	Kinetics and mechanism of plasmid DNA penetration through nanopores. Journal of Membrane Science, 2011, 371, 45-51.	8.2	51
118	A facile route to ruthenium–carbene complexes and their application in furfural hydrogenation. Applied Organometallic Chemistry, 2010, 24, 142-146.	3.5	18
119	Sustainable selective oxidations using ceria-based materials. Green Chemistry, 2010, 12, 939.	9.0	115
120	Hydrocarbon Oxidation with H2O2, Catalyzed by Iron Complexes with a Polydentate Pyridine-Based Ligand. Topics in Catalysis, 2010, 53, 1039-1044.	2.8	21
121	Interrelation of Chemistry and Process Design in Biodiesel Manufacturing by Heterogeneous Catalysis. Topics in Catalysis, 2010, 53, 1197-1201.	2.8	30
122	Understanding Catalytic Biomass Conversion Through Data Mining. Topics in Catalysis, 2010, 53, 1202-1208.	2.8	36
123	Glycerol Valorization: Dehydration to Acrolein Over Silica-Supported Niobia Catalysts. Topics in Catalysis, 2010, 53, 1217-1223.	2.8	69
124	Practical Issues in Catalytic and Hydrothermal Biomass Conversion: Concentration Effects on Reaction Pathways. Topics in Catalysis, 2010, 53, 1258-1263.	2.8	8
125	Finding Furfural Hydrogenation Catalysts <i>via</i> Predictive Modelling. Advanced Synthesis and Catalysis, 2010, 352, 2201-2210.	4.3	22
126	The best of both worlds. Nature Chemistry, 2010, 2, 9-10.	13.6	14

#	Article	IF	CITATIONS
127	Predictive modeling in homogeneous catalysis: a tutorial. Chemical Society Reviews, 2010, 39, 1891.	38.1	92
128	Preventing sintering of Au and Ag nanoparticles in silica-based hybrid gels using phenyl spacer groups. Journal of Materials Chemistry, 2010, 20, 3840.	6.7	35
129	Backbone Diversity Analysis in Catalyst Design. Advanced Synthesis and Catalysis, 2009, 351, 387-396.	4.3	28
130	Palladium atalysed Telomerisation of Isoprene with Glycerol and Polyethylene Glycol: A Facile Route to New Terpene Derivatives. Advanced Synthesis and Catalysis, 2009, 351, 325-330.	4.3	38
131	Bismuthâ€Ðoped Ceria, Ce _{0.90} Bi _{0.10} O ₂ : A Selective and Stable Catalyst for Clean Hydrogen Combustion. Advanced Synthesis and Catalysis, 2009, 351, 1557-1566.	4.3	18
132	Selective Hydrogenation of 5â€Ethoxymethylfurfural over Aluminaâ€Supported Heterogeneous Catalysts. Advanced Synthesis and Catalysis, 2009, 351, 3175-3185.	4.3	67
133	A Simple Buildingâ€Block Route to (Phosphanylâ€carbene)palladium Complexes via Intermolecular Addition of Functionalised Phosphanes to Isocyanides. European Journal of Inorganic Chemistry, 2009, 2009, 1313-1316.	2.0	11
134	Chiral imprinting of palladium with cinchona alkaloids. Nature Chemistry, 2009, 1, 160-164.	13.6	94
135	Ce0.95Cr0.05O2 and Ce0.97Cu0.03O2: active, selective and stable catalysts for selective hydrogen combustion. Dalton Transactions, 2009, , 5673.	3.3	8
136	Stable â€~soap and water' sponges doped with metal nanoparticles. Soft Matter, 2009, 5, 1994.	2.7	8
137	Marrying gas power and hydrogen energy: A catalytic system for combining methane conversion and hydrogen generation. Green Chemistry, 2009, 11, 921.	9.0	18
138	Lead-containing solid "oxygen reservoirs―for selective hydrogen combustion. Green Chemistry, 2009, 11, 1550.	9.0	11
139	Insights into Sonogashira Crossâ€Coupling by Highâ€Throughput Kinetics and Descriptor Modeling. Chemistry - A European Journal, 2008, 14, 2857-2866.	3.3	49
140	Selective Hydrogen Oxidation in the Presence of C ₃ Hydrocarbons Using Perovskite Oxygen Reservoirs. ChemPhysChem, 2008, 9, 1062-1068.	2.1	21
141	Catâ€inâ€aâ€Cup: Facile Separation of Large Homogeneous Catalysts. Angewandte Chemie - International Edition, 2008, 47, 5407-5410.	13.8	48
142	Transitionâ€metal nanoparticles: synthesis, stability and the leaching issue. Applied Organometallic Chemistry, 2008, 22, 288-299.	3.5	409
143	Selective Hydrogen Oxidation Catalysts <i>via</i> Genetic Algorithms. Advanced Synthesis and Catalysis, 2008, 350, 2237-2249.	4.3	22
144	Data mining in catalysis: Separating knowledge from garbage. Catalysis Today, 2008, 137, 2-10.	4.4	50

#	Article	IF	CITATIONS
145	Estimating kinetic parameters of complex catalytic reactions using a curve resolution based method. Chemometrics and Intelligent Laboratory Systems, 2008, 91, 101-109.	3.5	7
146	Desulfurisation of oils using ionic liquids: selection of cationic and anionic components to enhance extraction efficiency. Green Chemistry, 2008, 10, 87-92.	9.0	219
147	Optimising an artificial neural network for predicting the melting point of ionic liquids. Physical Chemistry Chemical Physics, 2008, 10, 5826.	2.8	88
148	Redox properties of doped and supported copper–ceria catalysts. Dalton Transactions, 2008, , 6573.	3.3	60
149	Matter of age: growing anisotropic gold nanocrystals in organic media. Physical Chemistry Chemical Physics, 2008, 10, 951-956.	2.8	38
150	Biodiesel by Catalytic Reactive Distillation Powered by Metal Oxides. Energy & Fuels, 2008, 22, 598-604.	5.1	229
151	Biodiesel production by heat-integrated reactive distillation. Computer Aided Chemical Engineering, 2008, , 775-780.	0.5	5
152	Sustainable Biodiesel Production by Catalytic Reactive Distillation. Chemical Industries, 2008, , 291-301.	0.1	1
153	Biodiesel production by integrated reactive-separation design. Computer Aided Chemical Engineering, 2007, 24, 1283-1288.	0.5	5
154	A "Green Route―to Propene through Selective Hydrogen Oxidation. Chemistry - A European Journal, 2007, 13, 5121-5128.	3.3	46
155	Ion- and Atom-Leaching Mechanisms from Palladium Nanoparticles in Cross-Coupling Reactions. Chemistry - A European Journal, 2007, 13, 6908-6913.	3.3	218
156	Anion and Cation Effects on Imidazolium Salt Melting Points: A Descriptor Modelling Study. ChemPhysChem, 2007, 8, 690-695.	2.1	173
157	Redox Kinetics of Ceriaâ€Based Mixed Oxides in Selective Hydrogen Combustion. ChemPhysChem, 2007, 8, 2490-2497.	2.1	32
158	In-situ UV-visible study of Pd nanocluster formation in solution. Physical Chemistry Chemical Physics, 2006, 8, 3669.	2.8	61
159	A Simple Method for Measuring the Size of Metal Nanoclusters in Solution. Journal of Physical Chemistry B, 2006, 110, 17437-17443.	2.6	37
160	Linking experiments to modeling in biodiesel production. Computer Aided Chemical Engineering, 2006, , 731-736.	0.5	1
161	Palladium-coated nickel nanoclusters: new Hiyama cross-coupling catalysts. Physical Chemistry Chemical Physics, 2006, 8, 151-157.	2.8	74
162	In Silico Design in Homogeneous Catalysis Using Descriptor Modelling. International Journal of Molecular Sciences, 2006, 7, 375-404.	4.1	71

#	Article	IF	CITATIONS
163	One-pot Pd/C catalysed â€~domino' HALEX and Sonogashira reactions: a ligand- and Cu-free alternative. Organic and Biomolecular Chemistry, 2006, 4, 111-115.	2.8	64
164	The heterogeneous advantage: biodiesel by catalytic reactive distillation. Topics in Catalysis, 2006, 40, 141-150.	2.8	199
165	Pd Nanoclusters in CC Coupling Reactions: Proof of Leaching. Angewandte Chemie - International Edition, 2006, 45, 2886-2890.	13.8	209
166	Clean Diesel Power via Microwave Susceptible Oxidation Catalysts. ChemPhysChem, 2006, 7, 747-755.	2.1	26
167	Solid Acid Catalysts for Biodiesel Production –-Towards Sustainable Energy. Advanced Synthesis and Catalysis, 2006, 348, 75-81.	4.3	499
168	Design and Assembly of Virtual Homogeneous Catalyst Libraries –Towardsin silico Catalyst Optimisation. Advanced Synthesis and Catalysis, 2006, 348, 361-369.	4.3	56
169	Electroreductive Palladium-Catalysed Ullmann Reactions in Ionic Liquids: Scope and Mechanism. Advanced Synthesis and Catalysis, 2006, 348, 1705-1710.	4.3	79
170	Pt0.02Sn0.003Mg0.06 on γ-alumina: a stable catalyst for oxidative dehydrogenation of ethane. Applied Catalysis A: General, 2005, 278, 187-194.	4.3	27
171	?Hot Spot? Hydrocarbon Oxidation Catalysed by Doped Perovskites?Towards Cleaner Diesel Power. ChemPhysChem, 2005, 6, 223-225.	2.1	25
172	Ligand Descriptor Analysis in Nickel-Catalysed Hydrocyanation: A Combined Experimental and Theoretical Study. Advanced Synthesis and Catalysis, 2005, 347, 803-810.	4.3	36
173	Click Chemistry: Copper Clusters Catalyse the Cycloaddition of Azides with Terminal Alkynes. Advanced Synthesis and Catalysis, 2005, 347, 811-815.	4.3	260
174	Topological Mapping of Bidentate Ligands: A Fast Approach for Screening Homogeneous Catalysts. Advanced Synthesis and Catalysis, 2005, 347, 1969-1977.	4.3	46
175	Palladium Nanoclusters in Sonogashira Cross-Coupling: A True Catalytic Species?. Advanced Synthesis and Catalysis, 2005, 347, 1965-1968.	4.3	88
176	Palladium nanoclusters in microcapsule membranes: From synthetic shells to synthetic cells. Physical Chemistry Chemical Physics, 2005, 7, 2237.	2.8	45
177	Two-Step Catalytic Oxidative Dehydrogenation of Propane:Â An Alternative Route to Propene. Organic Process Research and Development, 2005, 9, 397-403.	2.7	21
178	Tackling Calibration Problems of Spectroscopic Analysis in High-Throughput Experimentation. Analytical Chemistry, 2005, 77, 2227-2234.	6.5	8
179	New Device and Method for Flux-Proportional Sampling of Mobile Solutes in Soil and Groundwater. Environmental Science & Technology, 2005, 39, 274-282.	10.0	56
180	Detailed Mechanistic Studies usingin situ Spectroscopic Analysis: A Look at Little-Known Regions of the Heck Reaction. Advanced Synthesis and Catalysis, 2004, 346, 467-473.	4.3	32

#	Article	IF	CITATIONS
181	Combinatorial Explosion in Homogeneous Catalysis: Screening 60,000 Cross-Coupling Reactions. Advanced Synthesis and Catalysis, 2004, 346, 1844-1853.	4.3	68
182	In Situ Spectroscopic Analysis of Nanocluster Formation. ChemPhysChem, 2004, 5, 93-98.	2.1	61
183	Selective CO oxidation in the presence of hydrogen: fast parallel screening and mechanistic studies on ceria-based catalysts. Journal of Catalysis, 2004, 225, 489-497.	6.2	69
184	Model Selection and Optimal Sampling in High-Throughput Experimentation. Analytical Chemistry, 2004, 76, 3171-3178.	6.5	14
185	Self-Assembly of a Hexagonal Phase of Wormlike Micelles Containing Metal Nanoclusters. Langmuir, 2004, 20, 477-483.	3.5	41
186	Palladium-free and ligand-free Sonogashira cross-coupling. Green Chemistry, 2004, 6, 215.	9.0	181
187	Trapping Metal Nanoclusters in "Soap and Water―Soft Crystals. ChemPhysChem, 2003, 4, 526-528.	2.1	26
188	Combinatorial Design of Copper-Based Mixed Nanoclusters: New Catalysts for Suzuki Cross-Coupling. Advanced Synthesis and Catalysis, 2003, 345, 979-985.	4.3	86
189	Optimal Heck Cross-Coupling Catalysis: A Pseudo-Pharmaceutical Approach. Advanced Synthesis and Catalysis, 2003, 345, 1334-1340.	4.3	39
190	Solvent-Free Synthesis of Rechargeable Solid Oxygen Reservoirs for Clean Hydrogen Oxidation. Angewandte Chemie, 2003, 115, 3488-3490.	2.0	10
191	Recent Advances in Phase-Transfer Catalysis. ChemInform, 2003, 34, no.	0.0	0
192	Solvent-Free Synthesis of Rechargeable Solid Oxygen Reservoirs for Clean Hydrogen Oxidation ChemInform, 2003, 34, no.	0.0	0
193	Tracking Chemical Kinetics in High-Throughput Systems. Chemistry - A European Journal, 2003, 9, 3876-3881.	3.3	17
194	Solvent-Free Synthesis of Rechargeable Solid Oxygen Reservoirs for Clean Hydrogen Oxidation. Angewandte Chemie - International Edition, 2003, 42, 3366-3368.	13.8	47
195	Optimal on-line sampling of parallel reactions: general concept and a specific spectroscopic example. Catalysis Today, 2003, 81, 359-367.	4.4	13
196	Kinetic Studies of Cascade Reactions in High-Throughput Systems. Analytical Chemistry, 2003, 75, 6701-6707.	6.5	9
197	Solid/Liquid Palladium-Catalyzed Coupling of Haloaryls Using Alcohols as Reducing Agents:Â Kinetics and Process Optimization. Organic Process Research and Development, 2003, 7, 109-114.	2.7	6
198	Kinetic and mechanistic studies on the Heck reaction using real-time near infrared spectroscopy. Physical Chemistry Chemical Physics, 2003, 5, 4455-4460.	2.8	12

#	Article	IF	CITATIONS
199	Copper-Catalyzed Suzuki Cross-Coupling Using Mixed Nanocluster Catalysts. Journal of the American Chemical Society, 2002, 124, 11858-11859.	13.7	265
200	Assessing the removal of inorganic colloids and Cryptosporidium parvum from drinking water. Journal of Environmental Monitoring, 2002, 4, 244-248.	2.1	7
201	Competing bromination and oxidation pathways in acid bromate solutions: an experimental and theoretical studyElectronic supplementary information (ESI) available: details of continuous flow EPR experiments; compound characterisation data (1H NMR, MS) for the bromination of benzaldehyde. See http://www.rsc.org/suppdata/p2/b1/b108009a/. Perkin Transactions II RSC. 2002 630-635.	1.1	6
202	Heterogeneous Palladium-Catalysed Heck Reaction of Aryl Chlorides and Styrene in Water Under Mild Conditions. Advanced Synthesis and Catalysis, 2002, 344, 348-354.	4.3	63
203	Design and Parallel Synthesis of Novel Selective Hydrogen Oxidation Catalysts and their Application in Alkane Dehydrogenation. Advanced Synthesis and Catalysis, 2002, 344, 884-889.	4.3	32
204	Understanding Solid/Solid Organic Reactions. Journal of the American Chemical Society, 2001, 123, 8701-8708.	13.7	408
205	Palladium-catalysed oxidation of alcohols to carbonyl compounds with 1,2-dichloroethane as the primary oxidant: a theoretical studyElectronic supplementary information (ESI) available: Tables of absolute energies and structural parameters for all of the computed species. See http://www.rsc.org/suppdata/p2/b1/b102256n/. Perkin Transactions II RSC. 2001. 1998-2004.	1.1	1
206	One-Way Extraction of a Chemical Potential through a Liquid Membrane:Â Concept Demonstration and Applications. Industrial & Engineering Chemistry Research, 2001, 40, 6045-6050.	3.7	1
207	Supported phase-transfer catalysts as selective agents in biphenyl synthesis from haloaryls. Tetrahedron Letters, 2001, 42, 6117-6119.	1.4	46
208	Tuning the Selectivity of Heterogeneous Catalysts: A Trimetallic Approach to Reductive Coupling of Chloroarenes in Water. Advanced Synthesis and Catalysis, 2001, 343, 274-278.	4.3	16
209	Air Oxidation of Benzene to Biphenyl - A Dual Catalytic Approach. Advanced Synthesis and Catalysis, 2001, 343, 455-459.	4.3	58
210	Air Oxidation of Benzene to Biphenyl – A Dual Catalytic Approach. Advanced Synthesis and Catalysis, 2001, 343, 455-459.	4.3	1
211	Comparative study of phenol alkylation mechanisms using homogeneous and silica-supported boron trifluoride catalysts. Journal of Molecular Catalysis A, 2000, 159, 309-314.	4.8	67
212	Vanadium-Catalysed Oxidative Bromination Using Dilute Mineral Acids and Hydrogen Peroxide:Â An Option for Recycling Waste Acid Streams. Organic Process Research and Development, 2000, 4, 270-274.	2.7	67
213	On oxyhalogenation, acids, and non-mimics of bromoperoxidase enzymes. Green Chemistry, 2000, 2, 248-251.	9.0	51
214	Novel synthesis of alkali and quaternary onium hydroxides via liquid anion exchange; an alternative concept for the manufacture of KOH and other hydroxide salts. Chemical Communications, 2000, , 1293-1294.	4.1	3
215	Solid–solid palladium-catalysed water reduction with zinc: mechanisms of hydrogen generation and direct hydrogen transfer reactions. New Journal of Chemistry, 2000, 24, 305-308.	2.8	34
216	Regiospecific cross-coupling of haloaryls and pyridine to 2-phenylpyridine using water, zinc, and catalytic palladium on carbon. Perkin Transactions II RSC, 2000, , 1809-1812.	1.1	49

#	Article	IF	CITATIONS
217	Tandem One-Pot Palladium-Catalyzed Reductive and Oxidative Coupling of Benzene and Chlorobenzene. Journal of Organic Chemistry, 2000, 65, 3107-3110.	3.2	53
218	On the Mechanism of Palladium-Catalyzed Coupling of Haloaryls to Biaryls in Water with Zinc. Organic Letters, 2000, 2, 211-214.	4.6	69
219	Application of pertubation theory to free-radical benzylic and allylic oxidation of unconjugated ï€-systems. Tetrahedron, 1999, 55, 561-568.	1.9	4
220	Unusual phase transfer mechanism of the ruthenium-catalyzed oxidation of alcohols with hydrogen peroxide. Tetrahedron, 1999, 55, 6301-6310.	1.9	25
221	Palladium-catalyzed aryl-aryl coupling in water using molecular hydrogen: kinetics and process optimization of a solid-liquid-gas system. Tetrahedron, 1999, 55, 14763-14768.	1.9	87
222	Kinetics and mechanism of heterogeneous palladium-catalyzed coupling reactions of chloroaryls in water. Journal of the Chemical Society Perkin Transactions II, 1999, , 2481-2484.	0.9	57
223	Comparative autoxidation of 3-Carene and $\hat{l}\pm$ -Pinene: Factors governing regioselective hydrogen abstraction reactions. Tetrahedron, 1998, 54, 593-598.	1.9	53
224	Cyclic vs. acyclic allylic hydrogen abstraction: An entropy motivated process?. Tetrahedron, 1998, 54, 5417-5422.	1.9	7
225	A new simple method for the synthesis of cyclobutyl cyanide. Tetrahedron Letters, 1998, 39, 3093-3094.	1.4	6
226	Pyridines as bifunctional co-catalysts in the CrO3-catalyzed oxygenation of olefins by t-butyl hydroperoxide. Journal of Molecular Catalysis A, 1998, 136, 253-262.	4.8	33
227	Copper-catalyzed homolytic and heterolytic benzylic and allylic oxidation using tert-butyl hydroperoxide. Journal of the Chemical Society Perkin Transactions II, 1998, , 2429-2434.	0.9	129
228	Extending the Haloform reaction to non-methyl ketones: Oxidative cleavage of cycloalkanones to dicarboxylic acids using sodium hypochlorite under Phase Transfer Catalysis conditions. Tetrahedron, 1996, 52, 13641-13648.	1.9	14
229	Recent Advances in Phase-transfer Catalysis. , 0, , 206-257.		5