Peter A Ward

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/7796496/peter-a-ward-publications-by-year.pdf

Version: 2024-04-19

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

81 236 146 22,995 g-index h-index citations papers 25,464 7.16 9.2 249 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
236	Differential inflammatory responses of the native left and right ventricle associated with donor heart preservation. <i>Physiological Reports</i> , 2021 , 9, e15004	2.6	O
235	Role of Complement and Histones in Sepsis. Frontiers in Medicine, 2020, 7, 616957	4.9	8
234	Requirement of Complement C6 for Intact Innate Immune Responses in Mice. <i>Journal of Immunology</i> , 2020 , 205, 251-260	5.3	8
233	Complement as a Major Inducer of Harmful Events in Infectious Sepsis. Shock, 2020 , 54, 595-605	3.4	13
232	Complement and Its Consequences in Sepsis 2019 , 504-507.e1		
231	Disruption of Neutrophil Extracellular Traps (NETs) Links Mechanical Strain to Post-traumatic Inflammation. <i>Frontiers in Immunology</i> , 2019 , 10, 2148	8.4	10
230	New strategies for treatment of infectious sepsis. <i>Journal of Leukocyte Biology</i> , 2019 , 106, 187-192	6.5	38
229	GM-CSF Administration Improves Defects in Innate Immunity and Sepsis Survival in Obese Diabetic Mice. <i>Journal of Immunology</i> , 2019 , 202, 931-942	5.3	11
228	Innate immune responses to trauma. <i>Nature Immunology</i> , 2018 , 19, 327-341	19.1	208
227	Role of complement C5a and histones in septic cardiomyopathy. <i>Molecular Immunology</i> , 2018 , 102, 32-4	4.3	25
226	Obesity and type 2 diabetes mellitus drive immune dysfunction, infection development, and sepsis mortality. <i>Journal of Leukocyte Biology</i> , 2018 , 104, 525-534	6.5	104
225	Harmful Roles of TLR3 and TLR9 in Cardiac Dysfunction Developing during Polymicrobial Sepsis. BioMed Research International, 2018 , 2018, 4302726	3	18
224	Selective Biological Responses of Phagocytes and Lungs to Purified Histones. <i>Journal of Innate Immunity</i> , 2017 , 9, 300-317	6.9	13
223			30
	Complement and sepsis-induced heart dysfunction. <i>Molecular Immunology</i> , 2017 , 84, 57-64	4.3	
222	Complement and sepsis-induced heart dysfunction. <i>Molecular Immunology</i> , 2017 , 84, 57-64 Complement System 2017 , 785-812	4.3	
222			37

(2014-2017)

219	Complement-induced activation of MAPKs and Akt during sepsis: role in cardiac dysfunction. <i>FASEB Journal</i> , 2017 , 31, 4129-4139	0.9	32
218	Anti-inflammatory interventions-what has worked, not worked, and what may work in the future. <i>Translational Research</i> , 2016 , 167, 1-6	11	2
217	Therapeutic targeting of acute lung injury and acute respiratory distress syndrome. <i>Translational Research</i> , 2016 , 167, 183-91	11	107
216	Complement Destabilizes Cardiomyocyte Function In Vivo after Polymicrobial Sepsis and In Vitro. Journal of Immunology, 2016 , 197, 2353-61	5.3	35
215	Complement-induced activation of the cardiac NLRP3 inflammasome in sepsis. <i>FASEB Journal</i> , 2016 , 30, 3997-4006	0.9	67
214	The immune systems role in sepsis progression, resolution, and long-term outcome. <i>Immunological Reviews</i> , 2016 , 274, 330-353	11.3	286
213	Sepsis-induced immune dysfunction: can immune therapies reduce mortality?. <i>Journal of Clinical Investigation</i> , 2016 , 126, 23-31	15.9	309
212	Bidirectional Crosstalk between C5a Receptors and the NLRP3 Inflammasome in Macrophages and Monocytes. <i>Mediators of Inflammation</i> , 2016 , 2016, 1340156	4.3	28
211	New Insights into Molecular Mechanisms of Immune Complex-Induced Injury in Lung. <i>Frontiers in Immunology</i> , 2016 , 7, 86	8.4	18
2 10	Melatonin alleviates acute lung injury through inhibiting the NLRP3 inflammasome. <i>Journal of Pineal Research</i> , 2016 , 60, 405-14	10.4	146
209	Role of extracellular histones in the cardiomyopathy of sepsis. FASEB Journal, 2015, 29, 2185-93	0.9	73
208	Organ distribution of histones after intravenous infusion of FITC histones or after sepsis. <i>Immunologic Research</i> , 2015 , 61, 177-86	4.3	30
207	The molecular fingerprint of lung inflammation after blunt chest trauma. <i>European Journal of Medical Research</i> , 2015 , 20, 70	4.8	29
206	Experimental Malaria in Pregnancy Induces Neurocognitive Injury in Uninfected Offspring via a C5a-C5a Receptor Dependent Pathway. <i>PLoS Pathogens</i> , 2015 , 11, e1005140	7.6	28
205	Experimental design of complement component 5a-induced acute lung injury (C5a-ALI): a role of CC-chemokine receptor type 5 during immune activation by anaphylatoxin. <i>FASEB Journal</i> , 2015 , 29, 370	62:92	30
204	Resolvins on the way to resolution. <i>Journal of Experimental Medicine</i> , 2015 , 212, 1142	16.6	2
203	Cutting edge: critical role for C5aRs in the development of septic lymphopenia in mice. <i>Journal of Immunology</i> , 2015 , 194, 868-72	5.3	20
202	Inhibition of junctional adhesion molecule-A/LFA interaction attenuates leukocyte trafficking and inflammation in brain ischemia/reperfusion injury. <i>Neurobiology of Disease</i> , 2014 , 67, 57-70	7.5	56

201	Protein-based therapies for acute lung injury: targeting neutrophil extracellular traps. <i>Expert Opinion on Therapeutic Targets</i> , 2014 , 18, 703-14	6.4	37
200	Critical role for the NLRP3 inflammasome during acute lung injury. <i>Journal of Immunology</i> , 2014 , 192, 5974-83	5.3	202
199	Acute lung injury and the role of histones. <i>Translational Respiratory Medicine</i> , 2014 , 2, 1		30
198	Lung inflammation and damage induced by extracellular histones. <i>Inflammation and Cell Signaling</i> , 2014 , 1,		8
197	Interruption of macrophage-derived IL-27(p28) production by IL-10 during sepsis requires STAT3 but not SOCS3. <i>Journal of Immunology</i> , 2014 , 193, 5668-77	5.3	30
196	Tyrosine kinase 2 promotes sepsis-associated lethality by facilitating production of interleukin-27. Journal of Leukocyte Biology, 2014 , 96, 123-31	6.5	18
195	Persistent neutrophil dysfunction and suppression of acute lung injury in mice following cecal ligation and puncture sepsis. <i>Journal of Innate Immunity</i> , 2014 , 6, 695-705	6.9	23
194	Induction of M2 regulatory macrophages through the <code>Q</code> -adrenergic receptor with protection during endotoxemia and acute lung injury. <i>Journal of Innate Immunity</i> , 2014 , 6, 607-18	6.9	98
193	Modulation of inflammation by interleukin-27. <i>Journal of Leukocyte Biology</i> , 2013 , 94, 1159-65	6.5	64
192	The bipolar role of miR-466l in inflammation. <i>Immunity</i> , 2013 , 39, 801-2	32.3	1
191	Regulation of IL-17 family members by adrenal hormones during experimental sepsis in mice. <i>American Journal of Pathology</i> , 2013 , 182, 1124-30	5.8	22
190	The inflammatory response in sepsis. <i>Trends in Immunology</i> , 2013 , 34, 129-36	14.4	279
189	Extracellular histones are essential effectors of C5aR- and C5L2-mediated tissue damage and inflammation in acute lung injury. <i>FASEB Journal</i> , 2013 , 27, 5010-21	0.9	150
188	CD11c+ alveolar macrophages are a source of IL-23 during lipopolysaccharide-induced acute lung injury. <i>Shock</i> , 2013 , 39, 447-52	3.4	32
187	Changes and regulation of the C5a receptor on neutrophils during septic shock in humans. <i>Journal of Immunology</i> , 2013 , 190, 4215-25	5.3	71
186	The interaction between C5a and both C5aR and C5L2 receptors is required for production of G-CSF during acute inflammation. <i>European Journal of Immunology</i> , 2013 , 43, 1907-13	6.1	30
185	Zonulin as prehaptoglobin2 regulates lung permeability and activates the complement system. <i>American Journal of Physiology - Lung Cellular and Molecular Physiology</i> , 2013 , 304, L863-72	5.8	38
184	An endogenous factor mediates shock-induced injury. <i>Nature Medicine</i> , 2013 , 19, 1368-9	50.5	12

(2011-2013)

183	Neuroendocrine Regulation Of The IL-27-Dependent Immune Response In Macrophages. <i>Blood</i> , 2013 , 122, 3460-3460	2.2	
182	Interactions between coagulation and complementtheir role in inflammation. <i>Seminars in Immunopathology</i> , 2012 , 34, 151-65	12	280
181	Complement activation product C5a is a selective suppressor of TLR4-induced, but not TLR3-induced, production of IL-27(p28) from macrophages. <i>Journal of Immunology</i> , 2012 , 188, 5086-93	5.3	37
180	New approaches to the study of sepsis. <i>EMBO Molecular Medicine</i> , 2012 , 4, 1234-43	12	80
179	Fingerprinting of the TLR4-induced acute inflammatory response. <i>Experimental and Molecular Pathology</i> , 2012 , 93, 319-23	4.4	19
178	Evidence for anti-inflammatory effects of C5a on the innate IL-17A/IL-23 axis. <i>FASEB Journal</i> , 2012 , 26, 1640-51	0.9	55
177	A historical perspective on sepsis. American Journal of Pathology, 2012, 181, 2-7	5.8	30
176	Therapeutic potential of targeting IL-17 and IL-23 in sepsis. <i>Clinical and Translational Medicine</i> , 2012 , 1, 4	5.7	29
175	New developments in C5a receptor signaling. <i>Cell Health and Cytoskeleton</i> , 2012 , 4, 73-82		37
174	Regulatory effects of C5a on IL-17A, IL-17F, and IL-23. Frontiers in Immunology, 2012, 3, 387	8.4	24
173	Anti-inflammatory effects of I adrenergic receptor agonists in experimental acute lung injury. <i>FASEB Journal</i> , 2012 , 26, 2137-44	0.9	68
172	Manipulation of the complement system for benefit in sepsis. <i>Critical Care Research and Practice</i> , 2012 , 2012, 427607	1.5	22
171	Role of C3, C5 and anaphylatoxin receptors in acute lung injury and in sepsis. <i>Advances in Experimental Medicine and Biology</i> , 2012 , 946, 147-59	3.6	98
170	The outcome of polymicrobial sepsis is independent of T and B cells. <i>Shock</i> , 2011 , 36, 396-401	3.4	27
169	Oxidants and redox signaling in acute lung injury. Comprehensive Physiology, 2011, 1, 1365-81	7.7	45
168	The complement system. <i>Cell and Tissue Research</i> , 2011 , 343, 227-35	4.2	498
167	Disturbances of the hypothalamic-pituitary-adrenal axis and plasma electrolytes during experimental sepsis. <i>Annals of Intensive Care</i> , 2011 , 1, 53	8.9	17
166	Role of endothelial chemokines and their receptors during inflammation. <i>Journal of Investigative Surgery</i> , 2011 , 24, 18-27	1.2	94

165	Complement dependency of cardiomyocyte release of mediators during sepsis. <i>FASEB Journal</i> , 2011 , 25, 2500-8	0.9	45
164	MyD88-dependent production of IL-17F is modulated by the anaphylatoxin C5a via the Akt signaling pathway. <i>FASEB Journal</i> , 2011 , 25, 4222-32	0.9	26
163	Do MDL-1+ cells play a broad role in acute inflammation?. <i>Journal of Clinical Investigation</i> , 2011 , 121, 4234-7	15.9	2
162	Oxidative stress: acute and progressive lung injury. <i>Annals of the New York Academy of Sciences</i> , 2010 , 1203, 53-9	6.5	101
161	Role of C5 activation products in sepsis. Scientific World Journal, The, 2010, 10, 2395-402	2.2	24
160	The harmful role of c5a on innate immunity in sepsis. <i>Journal of Innate Immunity</i> , 2010 , 2, 439-45	6.9	112
159	Attenuation of IgG immune complex-induced acute lung injury by silencing C5aR in lung epithelial cells. <i>FASEB Journal</i> , 2009 , 23, 3808-18	0.9	39
158	Cross-talk between TLR4 and FcgammaReceptorIII (CD16) pathways. <i>PLoS Pathogens</i> , 2009 , 5, e100046	54 7.6	67
157	Sepsis, complement and the dysregulated inflammatory response. <i>Journal of Cellular and Molecular Medicine</i> , 2009 , 13, 4154-60	5.6	53
156	Functions of C5a receptors. <i>Journal of Molecular Medicine</i> , 2009 , 87, 375-8	5.5	87
156 155	Functions of C5a receptors. <i>Journal of Molecular Medicine</i> , 2009 , 87, 375-8 The sepsis seesaw: seeking a heart salve. <i>Nature Medicine</i> , 2009 , 15, 497-8	50.5	31
		50.5	
155	The sepsis seesaw: seeking a heart salve. <i>Nature Medicine</i> , 2009 , 15, 497-8	50.5	31
155 154	The sepsis seesaw: seeking a heart salve. <i>Nature Medicine</i> , 2009 , 15, 497-8 Immunodesign of experimental sepsis by cecal ligation and puncture. <i>Nature Protocols</i> , 2009 , 4, 31-6 Inhibition of complement C5a prevents breakdown of the blood-brain barrier and pituitary	50.5	31
155 154 153	The sepsis seesaw: seeking a heart salve. <i>Nature Medicine</i> , 2009 , 15, 497-8 Immunodesign of experimental sepsis by cecal ligation and puncture. <i>Nature Protocols</i> , 2009 , 4, 31-6 Inhibition of complement C5a prevents breakdown of the blood-brain barrier and pituitary dysfunction in experimental sepsis. <i>Critical Care</i> , 2009 , 13, R12	50.5 18.8 10.8	31 1125 68
155 154 153	The sepsis seesaw: seeking a heart salve. <i>Nature Medicine</i> , 2009 , 15, 497-8 Immunodesign of experimental sepsis by cecal ligation and puncture. <i>Nature Protocols</i> , 2009 , 4, 31-6 Inhibition of complement C5a prevents breakdown of the blood-brain barrier and pituitary dysfunction in experimental sepsis. <i>Critical Care</i> , 2009 , 13, R12 The first fifty years in research. <i>Annual Review of Pathology: Mechanisms of Disease</i> , 2009 , 4, 1-18 Upregulation of phagocyte-derived catecholamines augments the acute inflammatory response.	50.5 18.8 10.8	31 1125 68
155 154 153 152	The sepsis seesaw: seeking a heart salve. <i>Nature Medicine</i> , 2009 , 15, 497-8 Immunodesign of experimental sepsis by cecal ligation and puncture. <i>Nature Protocols</i> , 2009 , 4, 31-6 Inhibition of complement C5a prevents breakdown of the blood-brain barrier and pituitary dysfunction in experimental sepsis. <i>Critical Care</i> , 2009 , 13, R12 The first fifty years in research. <i>Annual Review of Pathology: Mechanisms of Disease</i> , 2009 , 4, 1-18 Upregulation of phagocyte-derived catecholamines augments the acute inflammatory response. <i>PLoS ONE</i> , 2009 , 4, e4414	50.5 18.8 10.8	31 1125 68

147	On being a pathologist. Human Pathology, 2008, 39, 1719-24	3.7	
146	Ability of antioxidant liposomes to prevent acute and progressive pulmonary injury. <i>Antioxidants and Redox Signaling</i> , 2008 , 10, 973-81	8.4	52
145	Acute lung injury induced by lipopolysaccharide is independent of complement activation. <i>Journal of Immunology</i> , 2008 , 180, 7664-72	5.3	98
144	C5 deficiency and C5a or C5aR blockade protects against cerebral malaria. <i>Journal of Experimental Medicine</i> , 2008 , 205, 1133-43	16.6	82
143	Functions of the complement components C3 and C5 during sepsis. FASEB Journal, 2008, 22, 3483-90	0.9	54
142	Role of the complement in experimental sepsis. <i>Journal of Leukocyte Biology</i> , 2008 , 83, 467-70	6.5	36
141	Adverse functions of IL-17A in experimental sepsis. FASEB Journal, 2008, 22, 2198-205	0.9	157
140	Molecular events in the cardiomyopathy of sepsis. <i>Molecular Medicine</i> , 2008 , 14, 327-36	6.2	90
139	The complement anaphylatoxin C5a induces apoptosis in adrenomedullary cells during experimental sepsis. <i>PLoS ONE</i> , 2008 , 3, e2560	3.7	39
138	Functional Roles for C5a Receptors in Sepsis. <i>FASEB Journal</i> , 2008 , 22, 48.10	0.9	
137	Inhibition of the alternative complement activation pathway in traumatic brain injury by a monoclonal anti-factor B antibody: a randomized placebo-controlled study in mice. <i>Journal of Neuroinflammation</i> , 2007 , 4, 13	10.1	86
136	STAT3 and suppressor of cytokine signaling 3: potential targets in lung inflammatory responses. <i>Expert Opinion on Therapeutic Targets</i> , 2007 , 11, 869-80	6.4	57
136		6.4 50.4	
	Expert Opinion on Therapeutic Targets, 2007 , 11, 869-80	<u> </u>	
135	Expert Opinion on Therapeutic Targets, 2007, 11, 869-80 Phagocyte-derived catecholamines enhance acute inflammatory injury. Nature, 2007, 449, 721-5	50.4	332
135	Phagocyte-derived catecholamines enhance acute inflammatory injury. <i>Nature</i> , 2007 , 449, 721-5 C5a-blockade improves burn-induced cardiac dysfunction. <i>Journal of Immunology</i> , 2007 , 178, 7902-10	50.4	332
135 134 133	Phagocyte-derived catecholamines enhance acute inflammatory injury. <i>Nature</i> , 2007 , 449, 721-5 C5a-blockade improves burn-induced cardiac dysfunction. <i>Journal of Immunology</i> , 2007 , 178, 7902-10 Inflammatory Disorders 2007 , 1-5 The phosphatidylinositol 3-kinase signaling pathway exerts protective effects during sepsis by	50.4	332

129	Role of oxidants in lung injury during sepsis. Antioxidants and Redox Signaling, 2007, 9, 1991-2002	8.4	167
128	In vivo biological responses in the presence or absence of C3. <i>Advances in Experimental Medicine and Biology</i> , 2007 , 598, 240-50	3.6	1
127	Reduced neuronal cell death after experimental brain injury in mice lacking a functional alternative pathway of complement activation. <i>BMC Neuroscience</i> , 2006 , 7, 55	3.2	71
126	Attenuation of half sulfur mustard gas-induced acute lung injury in rats. <i>Journal of Applied Toxicology</i> , 2006 , 26, 126-31	4.1	82
125	Adenovirus-mediated in vivo silencing of anaphylatoxin receptor C5aR. <i>Journal of Biomedicine and Biotechnology</i> , 2006 , 2006, 28945		8
124	Adenoviral-mediated overexpression of SOCS3 enhances IgG immune complex-induced acute lung injury. <i>Journal of Immunology</i> , 2006 , 177, 612-20	5.3	28
123	Divergent signaling pathways in phagocytic cells during sepsis. <i>Journal of Immunology</i> , 2006 , 177, 1306-	15 3	33
122	Regulation of lung inflammation in the model of IgG immune-complex injury. <i>Annual Review of Pathology: Mechanisms of Disease</i> , 2006 , 1, 215-42	34	43
121	An essential role for complement C5a in the pathogenesis of septic cardiac dysfunction. <i>Journal of Experimental Medicine</i> , 2006 , 203, 53-61	16.6	108
120	Better understanding of organ dysfunction requires proteomic involvement. <i>Journal of Proteome Research</i> , 2006 , 5, 1060-2	5.6	10
119	Complement in lung disease. <i>Autoimmunity</i> , 2006 , 39, 387-94	3	46
118	In vivo regulation of neutrophil apoptosis by C5a during sepsis. <i>Journal of Leukocyte Biology</i> , 2006 , 80, 1575-83	6.5	57
117	C5a, a therapeutic target in sepsis. Recent Patents on Anti-infective Drug Discovery, 2006, 1, 57-65	1.6	24
116	Generation of C5a in the absence of C3: a new complement activation pathway. <i>Nature Medicine</i> , 2006 , 12, 682-7	50.5	746
115	New insights into cellular mechanisms during sepsis. <i>Immunologic Research</i> , 2006 , 34, 133-41	4.3	25
114	Relationship of acute lung inflammatory injury to Fas/FasL system. <i>American Journal of Pathology</i> , 2005 , 166, 685-94	5.8	65
113	Chapter 12 Endothelial cell injury and defense. Advances in Molecular and Cell Biology, 2005, 335-364		О
112	Role of C5a in inflammatory responses. <i>Annual Review of Immunology</i> , 2005 , 23, 821-52	34.7	715

(2003-2005)

111	Harmful and protective roles of neutrophils in sepsis. <i>Shock</i> , 2005 , 24, 40-7	3.4	105
110	Evaluation of endotoxin models for the study of sepsis. <i>Shock</i> , 2005 , 24 Suppl 1, 7-11	3.4	134
109	Complement-induced Impairment of the Innate Immune System During Sepsis. <i>Current Infectious Disease Reports</i> , 2005 , 7, 349-54	3.9	7
108	Evidence for a functional role of the second C5a receptor C5L2. FASEB Journal, 2005, 19, 1003-5	0.9	114
107	Changes in the novel orphan, C5a receptor (C5L2), during experimental sepsis and sepsis in humans. <i>Journal of Immunology</i> , 2005 , 174, 1104-10	5.3	69
106	Regulatory role of C5a in LPS-induced IL-6 production by neutrophils during sepsis. <i>FASEB Journal</i> , 2004 , 18, 370-2	0.9	122
105	Regulatory role of C5a on macrophage migration inhibitory factor release from neutrophils. <i>Journal of Immunology</i> , 2004 , 173, 1355-9	5.3	55
104	Role of C5a-C5aR interaction in sepsis. <i>Shock</i> , 2004 , 21, 1-7	3.4	78
103	Stat3 activation in acute lung injury. <i>Journal of Immunology</i> , 2004 , 172, 7703-12	5.3	86
102	The dark side of C5a in sepsis. <i>Nature Reviews Immunology</i> , 2004 , 4, 133-42	36.5	337
102	The dark side of C5a in sepsis. <i>Nature Reviews Immunology</i> , 2004 , 4, 133-42 Complement-induced impairment of the innate immune system during sepsis. <i>Current Allergy and Asthma Reports</i> , 2004 , 4, 359-64	36.5 5.6	337 6
	Complement-induced impairment of the innate immune system during sepsis. Current Allergy and		
101	Complement-induced impairment of the innate immune system during sepsis. <i>Current Allergy and Asthma Reports</i> , 2004 , 4, 359-64 Selectin inhibition modulates Akt/MAPK signaling and chemokine expression after liver	5.6	6
101	Complement-induced impairment of the innate immune system during sepsis. <i>Current Allergy and Asthma Reports</i> , 2004 , 4, 359-64 Selectin inhibition modulates Akt/MAPK signaling and chemokine expression after liver ischemia-reperfusion. <i>Journal of Investigative Surgery</i> , 2004 , 17, 303-13 Mechanisms of inflammatory response syndrome in sepsis. <i>Drug Discovery Today Disease</i>	5.6	6 35
101	Complement-induced impairment of the innate immune system during sepsis. <i>Current Allergy and Asthma Reports</i> , 2004 , 4, 359-64 Selectin inhibition modulates Akt/MAPK signaling and chemokine expression after liver ischemia-reperfusion. <i>Journal of Investigative Surgery</i> , 2004 , 17, 303-13 Mechanisms of inflammatory response syndrome in sepsis. <i>Drug Discovery Today Disease Mechanisms</i> , 2004 , 1, 345-350 C5a-induced gene expression in human umbilical vein endothelial cells. <i>American Journal of</i>	5.6	6 35 9
101 100 99 98	Complement-induced impairment of the innate immune system during sepsis. Current Allergy and Asthma Reports, 2004, 4, 359-64 Selectin inhibition modulates Akt/MAPK signaling and chemokine expression after liver ischemia-reperfusion. Journal of Investigative Surgery, 2004, 17, 303-13 Mechanisms of inflammatory response syndrome in sepsis. Drug Discovery Today Disease Mechanisms, 2004, 1, 345-350 C5a-induced gene expression in human umbilical vein endothelial cells. American Journal of Pathology, 2004, 164, 849-59 Disturbed homeostasis of lung intercellular adhesion molecule-1 and vascular cell adhesion	5.6 1.2 5.8	6 35 9 134
101 100 99 98 97	Complement-induced impairment of the innate immune system during sepsis. <i>Current Allergy and Asthma Reports</i> , 2004 , 4, 359-64 Selectin inhibition modulates Akt/MAPK signaling and chemokine expression after liver ischemia-reperfusion. <i>Journal of Investigative Surgery</i> , 2004 , 17, 303-13 Mechanisms of inflammatory response syndrome in sepsis. <i>Drug Discovery Today Disease Mechanisms</i> , 2004 , 1, 345-350 C5a-induced gene expression in human umbilical vein endothelial cells. <i>American Journal of Pathology</i> , 2004 , 164, 849-59 Disturbed homeostasis of lung intercellular adhesion molecule-1 and vascular cell adhesion molecule-1 during sepsis. <i>American Journal of Pathology</i> , 2004 , 164, 1435-45 Novel chemokine responsiveness and mobilization of neutrophils during sepsis. <i>American Journal of</i>	5.6 1.2 5.8	6 35 9 134 45

93	Protective effects of IL-6 blockade in sepsis are linked to reduced C5a receptor expression. <i>Journal of Immunology</i> , 2003 , 170, 503-7	5.3	264
92	Anti-inflammatory strategies for the treatment of sepsis. <i>Expert Opinion on Biological Therapy</i> , 2003 , 3, 339-50	5.4	27
91	Murine complement interactions with Pseudomonas aeruginosa and their consequences during pneumonia. <i>American Journal of Respiratory Cell and Molecular Biology</i> , 2003 , 29, 432-8	5.7	34
90	Novel strategies for the treatment of sepsis. <i>Nature Medicine</i> , 2003 , 9, 517-24	50.5	682
89	Regulation by C5a of neutrophil activation during sepsis. <i>Immunity</i> , 2003 , 19, 193-202	32.3	93
88	Neutrophil C5a receptor and the outcome in a rat model of sepsis. FASEB Journal, 2003, 17, 1889-91	0.9	69
87	A key role of C5a/C5aR activation for the development of sepsis. <i>Journal of Leukocyte Biology</i> , 2003 , 74, 966-70	6.5	34
86	Anti-complement strategies in experimental sepsis. <i>Scandinavian Journal of Infectious Diseases</i> , 2003 , 35, 601-3		12
85	The enigma of sepsis. Journal of Clinical Investigation, 2003, 112, 460-7	15.9	216
84	The enigma of sepsis. <i>Journal of Clinical Investigation</i> , 2003 , 112, 460-467	15.9	433
83	Mediators and regulation of neutrophil accumulation in inflammatory responses in lung: insights from the IgG immune complex model. <i>Free Radical Biology and Medicine</i> , 2002 , 33, 303-10	7.8	124
8 ₃		7.8	124 68
	from the IgG immune complex model. <i>Free Radical Biology and Medicine</i> , 2002 , 33, 303-10 Protection from half-mustard-gas-induced acute lung injury in the rat. <i>Journal of Applied Toxicology</i> ,	,	
82	from the IgG immune complex model. <i>Free Radical Biology and Medicine</i> , 2002 , 33, 303-10 Protection from half-mustard-gas-induced acute lung injury in the rat. <i>Journal of Applied Toxicology</i> , 2002 , 22, 257-62 Endogenous regulation of the acute inflammatory response. <i>Molecular and Cellular Biochemistry</i> ,	4.1	68
82	from the IgG immune complex model. Free Radical Biology and Medicine, 2002, 33, 303-10 Protection from half-mustard-gas-induced acute lung injury in the rat. Journal of Applied Toxicology, 2002, 22, 257-62 Endogenous regulation of the acute inflammatory response. Molecular and Cellular Biochemistry, 2002, 234/235, 225-228 Complement-induced impairment of innate immunity during sepsis. Journal of Immunology, 2002,	4.1	68
82 81 80	From the IgG immune complex model. Free Radical Biology and Medicine, 2002, 33, 303-10 Protection from half-mustard-gas-induced acute lung injury in the rat. Journal of Applied Toxicology, 2002, 22, 257-62 Endogenous regulation of the acute inflammatory response. Molecular and Cellular Biochemistry, 2002, 234/235, 225-228 Complement-induced impairment of innate immunity during sepsis. Journal of Immunology, 2002, 169, 3223-31	4.1 4.2 5.3	68 42 154
82 81 80 79	Protection from half-mustard-gas-induced acute lung injury in the rat. <i>Journal of Applied Toxicology</i> , 2002, 22, 257-62 Endogenous regulation of the acute inflammatory response. <i>Molecular and Cellular Biochemistry</i> , 2002, 234/235, 225-228 Complement-induced impairment of innate immunity during sepsis. <i>Journal of Immunology</i> , 2002, 169, 3223-31 Protection of innate immunity by C5aR antagonist in septic mice. <i>FASEB Journal</i> , 2002, 16, 1567-74	4.1 4.2 5.3 0.9	68 42 154

(2000-2002)

75	Expression and function of the C5a receptor in rat alveolar epithelial cells. <i>Journal of Immunology</i> , 2002 , 168, 1919-25	5.3	80
74	Role of nitric oxide in acute lung inflammation: lessons learned from the inducible nitric oxide synthase knockout mouse. <i>Critical Care Medicine</i> , 2002 , 30, 1960-8	1.4	40
73	Anti-c5a ameliorates coagulation/fibrinolytic protein changes in a rat model of sepsis. <i>American Journal of Pathology</i> , 2002 , 160, 1867-75	5.8	141
72	Activator protein-1 activation in acute lung injury. American Journal of Pathology, 2002, 161, 275-82	5.8	38
71	Generation of C5a by phagocytic cells. American Journal of Pathology, 2002, 161, 1849-59	5.8	174
70	Increased C5a receptor expression in sepsis. <i>Journal of Clinical Investigation</i> , 2002 , 110, 101-108	15.9	130
69	Increased C5a receptor expression in sepsis. <i>Journal of Clinical Investigation</i> , 2002 , 110, 101-8	15.9	71
68	Endogenous regulation of the acute inflammatory response. <i>Molecular and Cellular Biochemistry</i> , 2002 , 234-235, 225-8	4.2	17
67	Regulation of experimental lung inflammation. Respiration Physiology, 2001, 128, 17-22		66
66	Protective effects of anti-C5a peptide antibodies in experimental sepsis. FASEB Journal, 2001, 15, 568-7	'© .9	114
65	Role of C5a in multiorgan failure during sepsis. <i>Journal of Immunology</i> , 2001 , 166, 1193-9	5.3	190
64	Regulatory effects of eotaxin on acute lung inflammatory injury. Journal of Immunology, 2001, 166, 520	8 5 .138	19
63	Role of IL-18 in acute lung inflammation. <i>Journal of Immunology</i> , 2001 , 167, 7060-8	5.3	87
62	Molecular signatures of sepsis: multiorgan gene expression profiles of systemic inflammation. <i>American Journal of Pathology</i> , 2001 , 159, 1199-209	5.8	173
61	Exogenous and endogenous nitric oxide but not iNOS inhibition improves function and survival of ischemically injured livers. <i>Journal of Investigative Surgery</i> , 2001 , 14, 267-73	1.2	27
60	Neutrophil depletion and chemokine response after liver ischemia and reperfusion. <i>Journal of Investigative Surgery</i> , 2001 , 14, 99-107	1.2	33
59	Systemic and lung physiological changes in rats after intravascular activation of complement. <i>Journal of Applied Physiology</i> , 2001 , 90, 2289-95	3.7	23
58	Leukocyte recruitment and the acute inflammatory response. <i>Brain Pathology</i> , 2000 , 10, 127-35	6	81

57	Protective effects of anti-C5a in sepsis-induced thymocyte apoptosis. <i>Journal of Clinical Investigation</i> , 2000 , 106, 1271-80	15.9	120
56	Regulation of inflammatory vascular damage. <i>Journal of Pathology</i> , 2000 , 190, 343-8	9.4	119
55	Role of CC chemokines (macrophage inflammatory protein-1 beta, monocyte chemoattractant protein-1, RANTES) in acute lung injury in rats. <i>Journal of Immunology</i> , 2000 , 164, 2650-9	5.3	119
54	Adhesion molecules in liver ischemia and reperfusion. <i>Journal of Surgical Research</i> , 2000 , 94, 185-94	2.5	60
53	Anti-inflammatory effects of mutant forms of secretory leukocyte protease inhibitor. <i>American Journal of Pathology</i> , 2000 , 156, 1033-9	5.8	47
52	Regulation of inflammatory vascular damage 2000 , 190, 343		3
51	Role of chemotactic factors in neutrophil activation after thermal injury in rats. <i>Cellular and Molecular Neurobiology</i> , 1999 , 23, 371-85	4.6	25
50	Roles for C-X-C chemokines and C5a in lung injury after hindlimb ischemia-reperfusion. <i>American Journal of Physiology - Lung Cellular and Molecular Physiology</i> , 1999 , 276, L57-63	5.8	27
49	Endothelial cell determinants of susceptibility to neutrophil-mediated killing. <i>Shock</i> , 1999 , 12, 111-7	3.4	26
48	Essential role of alveolar macrophages in intrapulmonary activation of NF-kappaB. <i>American Journal of Respiratory Cell and Molecular Biology</i> , 1999 , 20, 692-8	5.7	117
47	Protective effects of C5a blockade in sepsis. <i>Nature Medicine</i> , 1999 , 5, 788-92	50.5	349
46	Requirement for interleukin-12 in the pathogenesis of warm hepatic ischemia/reperfusion injury in mice. <i>Hepatology</i> , 1999 , 30, 1448-53	11.2	99
45	Inhibition of NF-kappaB activation and augmentation of IkappaBbeta by secretory leukocyte protease inhibitor during lung inflammation. <i>American Journal of Pathology</i> , 1999 , 154, 239-47	5.8	143
44	Synergistic enhancement of chemokine generation and lung injury by C5a or the membrane attack complex of complement. <i>American Journal of Pathology</i> , 1999 , 154, 1513-24	5.8	44
43	Molecular cloning and characterization of a novel human CC chemokine, SCYA26. <i>Genomics</i> , 1999 , 58, 313-7	4.3	12
42	Regulatory effects of interleukin-11 during acute lung inflammatory injury. <i>Journal of Leukocyte Biology</i> , 1999 , 66, 151-157	6.5	13
41	Neutrophil adhesion to human endothelial cells is induced by the membrane attack complex: the roles of P-selectin and platelet activating factor. <i>Inflammation</i> , 1998 , 22, 583-98	5.1	43
40	Cytokine and adhesion molecule requirements for lung injury induced by anti-glomerular basement membrane antibody. <i>Inflammation</i> , 1998 , 22, 403-17	5.1	5

39	Heterogeneity of vascular endothelial cells: differences in susceptibility to neutrophil-mediated injury. <i>Microvascular Research</i> , 1998 , 56, 203-11	3.7	54
38	Differing patterns of P-selectin expression in lung injury. American Journal of Pathology, 1998, 153, 111	35282	30
37	Role of complement in in vitro and in vivo lung inflammatory reactions. <i>Journal of Leukocyte Biology</i> , 1998 , 64, 40-8	6.5	49
36	Blood mononuclear cell production of TNF-alpha and IL-8: engagement of different signal transduction pathways including the p42 MAP kinase pathway. <i>Journal of Leukocyte Biology</i> , 1998 , 64, 124-33	6.5	13
35	A sulfatide receptor distinct from L-selectin is involved in lymphocyte activation. <i>FEBS Letters</i> , 1997 , 418, 310-4	3.8	14
34	Recruitment of inflammatory cells into lung: roles of cytokines, adhesion molecules, and complement. <i>Translational Research</i> , 1997 , 129, 400-4		36
33	Cytokine responses of human blood monocytes stimulated with Igs. <i>Inflammation</i> , 1997 , 21, 501-17	5.1	22
32	Role of complement, chemokines, and regulatory cytokines in acute lung injury. <i>Annals of the New York Academy of Sciences</i> , 1996 , 796, 104-12	6.5	118
31	Inflammatory mediators, cytokines, and adhesion molecules in pulmonary inflammation and injury. <i>Advances in Immunology</i> , 1996 , 62, 257-304	5.6	80
30	The role of cytokines and adhesion molecules in the development of inflammatory injury. <i>Trends in Molecular Medicine</i> , 1995 , 1, 40-5		122
29	Adhesion molecules and inflammatory injury. FASEB Journal, 1994, 8, 504-512	0.9	841
28	Mechanisms of neutrophil-mediated injury. <i>Clinical and Experimental Immunology</i> , 1993 , 93 Suppl 1, 2	6.2	1
27	Protective effects of oligosaccharides in P-selectin-dependent lung injury. <i>Nature</i> , 1993 , 364, 149-51	50.4	297
26	Mechanism of neutrophil-induced xanthine dehydrogenase to xanthine oxidase conversion in endothelial cells: evidence of a role for elastase. <i>American Journal of Respiratory Cell and Molecular Biology</i> , 1992 , 6, 270-8	5.7	67
25	Hydrogen peroxide-induced cell and tissue injury: protective effects of Mn2+. <i>Inflammation</i> , 1991 , 15, 291-301	5.1	33
24	Effects of adenosine on inositol 1,4,5-trisphosphate formation and intracellular calcium changes in formyl-Met-Leu-Phe-stimulated human neutrophils. <i>Journal of Leukocyte Biology</i> , 1990 , 48, 281-3	6.5	23
23	Iloprost inhibits neutrophil-induced lung injury and neutrophil adherence to endothelial monolayers. <i>American Journal of Respiratory Cell and Molecular Biology</i> , 1990 , 3, 301-9	5.7	71
22	Mediator-induced activation of xanthine oxidase in endothelial cells. FASEB Journal, 1989, 3, 2512-8	0.9	190

21	Rapid induction of neutrophil-endothelial adhesion by endothelial complement fixation. <i>Nature</i> , 1989 , 339, 314-7	50.4	140
20	Measurement of intracellular fluorescence of human monocytes relative to oxidative metabolism. <i>Journal of Leukocyte Biology</i> , 1988 , 43, 304-10	6.5	111
19	Formyl peptide chemotaxis receptors on the rat neutrophil: experimental evidence for negative cooperativity. <i>Journal of Cellular Biochemistry</i> , 1985 , 27, 359-75	4.7	13
18	A comparative study of pulmonary fibrosis induced by bleomycin and an O2 metabolite producing enzyme system. <i>Chest</i> , 1983 , 83, 44S-45S	5.3	17
17	Suppression of acute and chronic inflammation by orally administered prostaglandins. <i>Arthritis and Rheumatism</i> , 1981 , 24, 1151-8		48
16	Acute immunologic pulmonary alveolitis. <i>Journal of Clinical Investigation</i> , 1974 , 54, 349-57	15.9	196
15	The phlogistic role of C3 leukotactic fragments in myocardial infarcts of rats. <i>Journal of Experimental Medicine</i> , 1971 , 133, 885-900	16.6	341
14	Complement-derived leukotactic factors in inflammatory synovial fluids of humans. <i>Journal of Clinical Investigation</i> , 1971 , 50, 606-16	15.9	154
13	The production by antigen-stimulated lymphocytes of a leukotactic factor distinct from migration inhibitory factor. <i>Cellular Immunology</i> , 1970 , 1, 162-74	4.4	188
12	The requirement of serine esterase function in complement-dependent erythrophagocytosis. <i>Journal of Experimental Medicine</i> , 1969 , 130, 745-64	16.6	49
11	Esterases of the polymorphonuclear leukocyte capable of hydrolyzing acetyl DL-phenyl-alanine beta-naphthyl ester. Relationship to the activatable esterase of chemotaxis. <i>Journal of Experimental Medicine</i> , 1969 , 129, 569-84	16.6	32
10	The deactivation of rabbit neutrophils by chemotactic factor and the nature of the activatable esterase. <i>Journal of Experimental Medicine</i> , 1968 , 127, 693-709	16.6	225
9	Mechanisms of the inhibition of chemotaxis by phosphonate esters. <i>Journal of Experimental Medicine</i> , 1967 , 125, 1001-20	16.6	86
8	Partial biochemical characterization of the activated esterase required in the complement-dependent chemotaxis of rabbit polymorphonuclear leukocytes. <i>Journal of Experimental Medicine</i> , 1967 , 125, 1021-30	16.6	51
7	Generation of chemotactic activity in rabbit serum by plasminogen-streptokinase mixtures. <i>Journal of Experimental Medicine</i> , 1967 , 126, 149-58	16.6	50
6	The chemosuppression of chemotaxis. <i>Journal of Experimental Medicine</i> , 1966 , 124, 209-26	16.6	215
5	BOUND COMPLEMENT AND IMMUNOLOGIC INJURY OF BLOOD VESSELS. <i>Journal of Experimental Medicine</i> , 1965 , 121, 215-34	16.6	222
4	THE ROLE OF SERUM COMPLEMENT IN CHEMOTAXIS OF LEUKOCYTES IN VITRO. <i>Journal of Experimental Medicine</i> , 1965 , 122, 327-46	16.6	366

Studies on the adjuvant action of bacterial endotoxins on antibody formation. III. Histologic response of the rabbit spleen to a single injection of a purified protein antigen. *Journal of Experimental Medicine*, **1959**, 109, 463-74

16.6 62

2 Acute and Chronic Inflammation1-16

10

The Role of the Endothelium in Systemic Inflammatory Response Syndrome and Sepsis1294-1302