
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7796496/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Immunodesign of experimental sepsis by cecal ligation and puncture. Nature Protocols, 2009, 4, 31-36.	5.5	1,535
2	Harmful molecular mechanisms in sepsis. Nature Reviews Immunology, 2008, 8, 776-787.	10.6	1,035
3	Adhesion molecules and inflammatory injury. FASEB Journal, 1994, 8, 504-512.	0.2	936
4	ROLE OF C5A IN INFLAMMATORY RESPONSES. Annual Review of Immunology, 2005, 23, 821-852.	9.5	855
5	Generation of C5a in the absence of C3: a new complement activation pathway. Nature Medicine, 2006, 12, 682-687.	15.2	845
6	Novel strategies for the treatment of sepsis. Nature Medicine, 2003, 9, 517-524.	15.2	769
7	The complement system. Cell and Tissue Research, 2011, 343, 227-235.	1.5	686
8	The enigma of sepsis. Journal of Clinical Investigation, 2003, 112, 460-467.	3.9	499
9	The immune system's role in sepsis progression, resolution, and longâ€ŧerm outcome. Immunological Reviews, 2016, 274, 330-353.	2.8	495
10	Sepsis-induced immune dysfunction: can immune therapies reduce mortality?. Journal of Clinical Investigation, 2016, 126, 23-31.	3.9	461
11	THE ROLE OF SERUM COMPLEMENT IN CHEMOTAXIS OF LEUKOCYTES IN VITRO. Journal of Experimental Medicine, 1965, 122, 327-346.	4.2	421
12	The inflammatory response in sepsis. Trends in Immunology, 2013, 34, 129-136.	2.9	406
13	Phagocyte-derived catecholamines enhance acute inflammatory injury. Nature, 2007, 449, 721-725.	13.7	396
14	Interactions between coagulation and complement—their role in inflammation. Seminars in Immunopathology, 2012, 34, 151-165.	2.8	393
15	Protective effects of C5a blockade in sepsis. Nature Medicine, 1999, 5, 788-792.	15.2	385
16	The dark side of C5a in sepsis. Nature Reviews Immunology, 2004, 4, 133-142.	10.6	383
17	THE PHLOGISTIC ROLE OF C3 LEUKOTACTIC FRAGMENTS IN MYOCARDIAL INFARCTS OF RATS. Journal of Experimental Medicine, 1971, 133, 885-900.	4.2	378
18	Innate immune responses to trauma. Nature Immunology, 2018, 19, 327-341.	7.0	377

#	Article	IF	CITATIONS
19	Functional roles for C5a receptors in sepsis. Nature Medicine, 2008, 14, 551-557.	15.2	364
20	Protective effects of oligosaccharides in P-selectin-dependent lung injury. Nature, 1993, 364, 149-151.	13.7	335
21	The disconnect between animal models of sepsis and human sepsis. Journal of Leukocyte Biology, 2007, 81, 137-143.	1.5	325
22	Protective Effects of IL-6 Blockade in Sepsis Are Linked to Reduced C5a Receptor Expression. Journal of Immunology, 2003, 170, 503-507.	0.4	301
23	The enigma of sepsis. Journal of Clinical Investigation, 2003, 112, 460-467.	3.9	281
24	THE DEACTIVATION OF RABBIT NEUTROPHILS BY CHEMOTACTIC FACTOR AND THE NATURE OF THE ACTIVATABLE ESTERASE. Journal of Experimental Medicine, 1968, 127, 693-709.	4.2	258
25	Critical Role for the NLRP3 Inflammasome during Acute Lung Injury. Journal of Immunology, 2014, 192, 5974-5983.	0.4	255
26	BOUND COMPLEMENT AND IMMUNOLOGIC INJURY OF BLOOD VESSELS. Journal of Experimental Medicine, 1965, 121, 215-234.	4.2	246
27	THE CHEMOSUPPRESSION OF CHEMOTAXIS. Journal of Experimental Medicine, 1966, 124, 209-226.	4.2	237
28	Acute Immunologic Pulmonary Alveolitis. Journal of Clinical Investigation, 1974, 54, 349-357.	3.9	222
29	Melatonin alleviates acute lung injury through inhibiting the NLRP3 inflammasome. Journal of Pineal Research, 2016, 60, 405-414.	3.4	219
30	The production by antigen-stimulated lymphocytes of a leukotactic factor distinct from migration inhibitory factor. Cellular Immunology, 1970, 1, 162-174.	1.4	215
31	Mediatorâ€induced activation of xanthine oxidase in endothelial cells. FASEB Journal, 1989, 3, 2512-2518.	0.2	213
32	Generation of C5a by Phagocytic Cells. American Journal of Pathology, 2002, 161, 1849-1859.	1.9	206
33	Role of C5a in Multiorgan Failure During Sepsis. Journal of Immunology, 2001, 166, 1193-1199.	0.4	205
34	Role of Oxidants in Lung Injury During Sepsis. Antioxidants and Redox Signaling, 2007, 9, 1991-2002.	2.5	203
35	Obesity and type 2 diabetes mellitus drive immune dysfunction, infection development, and sepsis mortality. Journal of Leukocyte Biology, 2018, 104, 525-534.	1.5	202
36	Molecular Signatures of Sepsis. American Journal of Pathology, 2001, 159, 1199-1209.	1.9	190

#	Article	IF	CITATIONS
37	Extracellular histones are essential effectors of C5aR―and C5L2â€mediated tissue damage and inflammation in acute lung injury. FASEB Journal, 2013, 27, 5010-5021.	0.2	188
38	Complement-Induced Impairment of Innate Immunity During Sepsis. Journal of Immunology, 2002, 169, 3223-3231.	0.4	178
39	Adverse functions of ILâ€17A in experimental sepsis. FASEB Journal, 2008, 22, 2198-2205.	0.2	177
40	Complement-derived leukotactic factors in inflammatory synovial fluids of humans. Journal of Clinical Investigation, 1971, 50, 606-616.	3.9	173
41	An essential role for complement C5a in the pathogenesis of septic cardiac dysfunction. Journal of Experimental Medicine, 2006, 203, 53-61.	4.2	166
42	EVALUATION OF ENDOTOXIN MODELS FOR THE STUDY OF SEPSIS. Shock, 2005, 24, 7-11.	1.0	161
43	The Harmful Role of C5a on Innate Immunity in Sepsis. Journal of Innate Immunity, 2010, 2, 439-445.	1.8	158
44	Inhibition of NF-κB Activation and Augmentation of IκBβ by Secretory Leukocyte Protease Inhibitor during Lung Inflammation. American Journal of Pathology, 1999, 154, 239-247.	1.9	154
45	Protection of innate immunity by C5aR antagonist in septic mice. FASEB Journal, 2002, 16, 1567-1574.	0.2	152
46	Anti-C5a Ameliorates Coagulation/Fibrinolytic Protein Changes in a Rat Model of Sepsis. American Journal of Pathology, 2002, 160, 1867-1875.	1.9	152
47	C5a-Induced Gene Expression in Human Umbilical Vein Endothelial Cells. American Journal of Pathology, 2004, 164, 849-859.	1.9	152
48	Rapid induction of neutrophil–endothelial adhesion by endothelial complement fixation. Nature, 1989, 339, 314-317.	13.7	151
49	Therapeutic targeting of acute lung injury and acute respiratory distress syndrome. Translational Research, 2016, 167, 183-191.	2.2	148
50	Regulation of inflammatory vascular damage. , 2000, 190, 343-348.		145
51	Expression and Function of C5a Receptor in Mouse Microvascular Endothelial Cells. Journal of Immunology, 2002, 169, 5962-5970.	0.4	145
52	Protective effects of anti-C5a in sepsis-induced thymocyte apoptosis. Journal of Clinical Investigation, 2000, 106, 1271-1280.	3.9	143
53	Regulatory role of C5a in LPSâ€induced ILâ€6 production by neutrophils during sepsis. FASEB Journal, 2004, 18, 1-16.	0.2	142
54	Increased C5a receptor expression in sepsis. Journal of Clinical Investigation, 2002, 110, 101-108.	3.9	141

PETER A WARD

#	Article	IF	CITATIONS
55	Role of Complement, Chemokines, & Regulatory Cytokines in Acute Lung Injury. Annals of the New York Academy of Sciences, 1996, 796, 104-112.	1.8	136
56	Mediators and regulation of neutrophil accumulation in inflammatory responses in lung: insights from the IgG immune complex model 1,2 1This article is part of a series of reviews on "Reactive Oxygen and Nitrogen in Inflammation.―The full list of papers may be found on the homepage of the journal. 2Guest Editor: Giuseppe Poli. Free Radical Biology and Medicine, 2002, 33, 303-310.	1.3	135
57	Upregulation of Phagocyte-Derived Catecholamines Augments the Acute Inflammatory Response. PLoS ONE, 2009, 4, e4414.	1.1	134
58	Novel Chemokine Responsiveness and Mobilization of Neutrophils during Sepsis. American Journal of Pathology, 2004, 165, 2187-2196.	1.9	132
59	Oxidative stress: acute and progressive lung injury. Annals of the New York Academy of Sciences, 2010, 1203, 53-59.	1.8	131
60	Evidence for a functional role of the second C5a receptor C5L2. FASEB Journal, 2005, 19, 1003-1005.	0.2	130
61	Acute Lung Injury Induced by Lipopolysaccharide Is Independent of Complement Activation. Journal of Immunology, 2008, 180, 7664-7672.	0.4	130
62	Role of C3, C5 and Anaphylatoxin Receptors in Acute Lung Injury and in Sepsis. Advances in Experimental Medicine and Biology, 2012, 946, 147-159.	0.8	129
63	The role of cytokines and adhesion molecules in the development of inflammatory injury. Trends in Molecular Medicine, 1995, 1, 40-45.	2.6	126
64	Role of CC Chemokines (Macrophage Inflammatory Protein-1β, Monocyte Chemoattractant Protein-1,) Tj ETQq(0 0 rgBT 0.4	Overlock 10
65	Induction of M2 Regulatory Macrophages through the β ₂ -Adrenergic Receptor with Protection during Endotoxemia and Acute Lung Injury. Journal of Innate Immunity, 2014, 6, 607-618.	1.8	125
66	Protective effects of anti 5a peptide antibodies in experimental sepsis. FASEB Journal, 2001, 15, 568-570.	0.2	124
67	Measurement of Intracellular Fluorescence of Human Monocytes Relative to Oxidative Metabolism. Journal of Leukocyte Biology, 1988, 43, 304-310.	1.5	123
68	Essential Role of Alveolar Macrophages in Intrapulmonary Activation of NF- κ B. American Journal of Respiratory Cell and Molecular Biology, 1999, 20, 692-698.	1.4	121
69	HARMFUL AND PROTECTIVE ROLES OF NEUTROPHILS IN SEPSIS. Shock, 2005, 24, 40-47.	1.0	120
70	Role of Endothelial Chemokines and Their Receptors during Inflammation. Journal of Investigative Surgery, 2011, 24, 18-27.	0.6	110
71	Molecular Events in the Cardiomyopathy of Sepsis. Molecular Medicine, 2008, 14, 327-336.	1.9	106
72	Requirement for interleukin-12 in the pathogenesis of warm hepatic ischemia/reperfusion injury in mice. Hepatology, 1999, 30, 1448-1453.	3.6	104

#	Article	IF	CITATIONS
73	Functions of C5a receptors. Journal of Molecular Medicine, 2009, 87, 375-378.	1.7	104
74	Increased C5a receptor expression in sepsis. Journal of Clinical Investigation, 2002, 110, 101-108.	3.9	103
75	MECHANISMS OF THE INHIBITION OF CHEMOTAXIS BY PHOSPHONATE ESTERS. Journal of Experimental Medicine, 1967, 125, 1001-1020.	4.2	101
76	Regulation by C5a of Neutrophil Activation during Sepsis. Immunity, 2003, 19, 193-202.	6.6	99
77	Inhibition of the alternative complement activation pathway in traumatic brain injury by a monoclonal anti-factor B antibody: a randomized placebo-controlled study in mice. Journal of Neuroinflammation, 2007, 4, 13.	3.1	98
78	Role of extracellular histones in the cardiomyopathy of sepsis. FASEB Journal, 2015, 29, 2185-2193.	0.2	98
79	Expression and Function of the C5a Receptor in Rat Alveolar Epithelial Cells. Journal of Immunology, 2002, 168, 1919-1925.	0.4	96
80	Inflammatory Mediators, Cytokines, and Adhesion Molecules in Pulmonary Inflammation and Injury. Advances in Immunology, 1996, 62, 257-304.	1.1	95
81	Stat3 Activation in Acute Lung Injury. Journal of Immunology, 2004, 172, 7703-7712.	0.4	95
82	Role of IL-18 in Acute Lung Inflammation. Journal of Immunology, 2001, 167, 7060-7068.	0.4	94
83	Role of C5a???C5aR Interaction in Sepsis. Shock, 2004, 21, 1-7.	1.0	93
84	Complementâ€induced activation of the cardiac NLRP3 inflammasome in sepsis. FASEB Journal, 2016, 30, 3997-4006.	0.2	91
85	Leukocyte Recruitment and the Acute Inflammatory Response. Brain Pathology, 2000, 10, 127-135.	2.1	89
86	Attenuation of half sulfur mustard gas-induced acute lung injury in rats. Journal of Applied Toxicology, 2006, 26, 126-131.	1.4	89
87	C5 deficiency and C5a or C5aR blockade protects against cerebral malaria. Journal of Experimental Medicine, 2008, 205, 1133-1143.	4.2	89
88	Inhibition of complement C5a prevents breakdown of the blood-brain barrier and pituitary dysfunction in experimental sepsis. Critical Care, 2009, 13, R12.	2.5	87
89	New approaches to the study of sepsis. EMBO Molecular Medicine, 2012, 4, 1234-1243.	3.3	86
90	Modulation of inflammation by interleukin-27. Journal of Leukocyte Biology, 2013, 94, 1159-1165.	1.5	85

#	Article	IF	CITATIONS
91	Changes and Regulation of the C5a Receptor on Neutrophils during Septic Shock in Humans. Journal of Immunology, 2013, 190, 4215-4225.	0.4	85
92	C5a receptor and thymocyte apoptosis in sepsis. FASEB Journal, 2002, 16, 887-888.	0.2	84
93	Antiâ€inflammatory effects of β ₂ adrenergic receptor agonists in experimental acute lung injury. FASEB Journal, 2012, 26, 2137-2144.	0.2	84
94	lloprost Inhibits Neutrophil-induced Lung Injury and Neutrophil Adherence to Endothelial Monolayers. American Journal of Respiratory Cell and Molecular Biology, 1990, 3, 301-309.	1.4	83
95	Reduced neuronal cell death after experimental brain injury in mice lacking a functional alternative pathway of complement activation. BMC Neuroscience, 2006, 7, 55.	0.8	82
96	Cross-Talk between TLR4 and Fcl ³ ReceptorIII (CD16) Pathways. PLoS Pathogens, 2009, 5, e1000464.	2.1	77
97	Protection from half-mustard-gas-induced acute lung injury in the rat. Journal of Applied Toxicology, 2002, 22, 257-262.	1.4	76
98	Mechanism of Neutrophil-induced Xanthine Dehydrogenase to Xanthine Oxidase Conversion in Endothelial Cells: Evidence of a Role for Elastase. American Journal of Respiratory Cell and Molecular Biology, 1992, 6, 270-278.	1.4	73
99	Neutrophil C5a receptor and the outcome in a rat model of sepsis. FASEB Journal, 2003, 17, 1-17.	0.2	73
100	Changes in the Novel Orphan, C5a Receptor (C5L2), during Experimental Sepsis and Sepsis in Humans. Journal of Immunology, 2005, 174, 1104-1110.	0.4	73
101	Inhibition of junctional adhesion molecule-A/LFA interaction attenuates leukocyte trafficking and inflammation in brain ischemia/reperfusion injury. Neurobiology of Disease, 2014, 67, 57-70.	2.1	72
102	STUDIES ON THE ADJUVANT ACTION OF BACTERIAL ENDOTOXINS ON ANTIBODY FORMATION. Journal of Experimental Medicine, 1959, 109, 463-474.	4.2	71
103	Relationship of Acute Lung Inflammatory Injury to Fas/FasL System. American Journal of Pathology, 2005, 166, 685-694.	1.9	71
104	Regulation of experimental lung inflammation. Respiration Physiology, 2001, 128, 17-22.	2.8	69
105	Altered Neutrophil Trafficking During Sepsis. Journal of Immunology, 2002, 169, 307-314.	0.4	66
106	Regulatory Role of C5a on Macrophage Migration Inhibitory Factor Release from Neutrophils. Journal of Immunology, 2004, 173, 1355-1359.	0.4	66
107	STAT3 and suppressor of cytokine signaling 3: potential targets in lung inflammatory responses. Expert Opinion on Therapeutic Targets, 2007, 11, 869-880.	1.5	66
108	In vivo regulation of neutrophil apoptosis by C5a during sepsis. Journal of Leukocyte Biology, 2006, 80, 1575-1583.	1.5	65

PETER A WARD

#	Article	IF	CITATIONS
109	Functions of the complement components C3 and C5 during sepsis. FASEB Journal, 2008, 22, 3483-3490.	0.2	64
110	Oxidants and Redox Signaling in Acute Lung Injury. , 2011, 1, 1365-1381.		63
111	Adhesion Molecules in Liver Ischemia and Reperfusion. Journal of Surgical Research, 2000, 94, 185-194.	0.8	62
112	Sepsis, complement and the dysregulated inflammatory response. Journal of Cellular and Molecular Medicine, 2009, 13, 4154-4160.	1.6	62
113	Evidence for antiâ€inflammatory effects of C5a on the innate ILâ€17A/ILâ€23 axis. FASEB Journal, 2012, 26, 1640-1651.	0.2	62
114	Diabetes and Sepsis: Risk, Recurrence, and Ruination. Frontiers in Endocrinology, 2017, 8, 271.	1.5	62
115	Immunosuppression in Sepsis. JAMA - Journal of the American Medical Association, 2011, 306, 2618.	3.8	60
116	Role of complement in in vitro and in vivo lung inflammatory reactions. Journal of Leukocyte Biology, 1998, 64, 40-48.	1.5	59
117	Anti-Inflammatory Effects of Mutant Forms of Secretory Leukocyte Protease Inhibitor. American Journal of Pathology, 2000, 156, 1033-1039.	1.9	58
118	Disturbed Homeostasis of Lung Intercellular Adhesion Molecule-1 and Vascular Cell Adhesion Molecule-1 During Sepsis. American Journal of Pathology, 2004, 164, 1435-1445.	1.9	57
119	The Phosphatidylinositol 3-Kinase Signaling Pathway Exerts Protective Effects during Sepsis by Controlling C5a-Mediated Activation of Innate Immune Functions. Journal of Immunology, 2007, 178, 5940-5948.	0.4	57
120	Zonulin as prehaptoglobin2 regulates lung permeability and activates the complement system. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2013, 304, L863-L872.	1.3	57
121	GENERATION OF CHEMOTACTIC ACTIVITY IN RABBIT SERUM BY PLASMINOGEN-STREPTOKINASE MIXTURES. Journal of Experimental Medicine, 1967, 126, 149-158.	4.2	56
122	PARTIAL BIOCHEMICAL CHARACTERIZATION OF THE ACTIVATED ESTERASE REQUIRED IN THE COMPLEMENT-DEPENDENT CHEMOTAXIS OF RABBIT POLYMORPHONUCLEAR LEUKOCYTES. Journal of Experimental Medicine, 1967, 125, 1021-1030.	4.2	55
123	THE REQUIREMENT OF SERINE ESTERASE FUNCTION IN COMPLEMENT-DEPENDENT ERYTHROPHAGOCYTOSIS. Journal of Experimental Medicine, 1969, 130, 745-764.	4.2	55
124	Heterogeneity of Vascular Endothelial Cells: Differences in Susceptibility to Neutrophil-mediated Injury. Microvascular Research, 1998, 56, 203-211.	1.1	55
125	Ability of Antioxidant Liposomes to Prevent Acute and Progressive Pulmonary Injury. Antioxidants and Redox Signaling, 2008, 10, 963-972.	2.5	55
126	Complement in lung disease. Autoimmunity, 2006, 39, 387-394.	1.2	54

#	Article	IF	CITATIONS
127	Neutrophil adhesion to human endothelial cells is induced by the membrane attack complex: the roles of P-selectin and platelet activating factor. Inflammation, 1998, 22, 583-598.	1.7	52
128	Endogenous regulation of the acute inflammatory response. Molecular and Cellular Biochemistry, 2002, 234/235, 225-228.	1.4	52
129	Structure-Function Relationships of Human C5a and C5aR. Journal of Immunology, 2003, 170, 6115-6124.	0.4	52
130	The Complement Anaphylatoxin C5a Induces Apoptosis in Adrenomedullary Cells during Experimental Sepsis. PLoS ONE, 2008, 3, e2560.	1.1	52
131	REGULATION OF LUNG INFLAMMATION IN THE MODEL OF IGG IMMUNE-COMPLEX INJURY. Annual Review of Pathology: Mechanisms of Disease, 2006, 1, 215-242.	9.6	51
132	New strategies for treatment of infectious sepsis. Journal of Leukocyte Biology, 2019, 106, 187-192.	1.5	51
133	Understanding Immunosuppression after Sepsis. Immunity, 2017, 47, 3-5.	6.6	50
134	Suppression of acute and chronic inflammation by orally administered prostaglandins. Arthritis and Rheumatism, 1981, 24, 1151-1158.	6.7	49
135	Complement-related molecular events in sepsis leading to heart failure. Molecular Immunology, 2007, 44, 95-102.	1.0	48
136	Complement dependency of cardiomyocyte release of mediators during sepsis. FASEB Journal, 2011, 25, 2500-2508.	0.2	48
137	Complement Activation Product C5a Is a Selective Suppressor of TLR4-Induced, but Not TLR3-Induced, Production of IL-27(p28) from Macrophages. Journal of Immunology, 2012, 188, 5086-5093.	0.4	47
138	Complement Destabilizes Cardiomyocyte Function In Vivo after Polymicrobial Sepsis and In Vitro. Journal of Immunology, 2016, 197, 2353-2361.	0.4	47
139	Synergistic Enhancement of Chemokine Generation and Lung Injury by C5a or the Membrane Attack Complex of Complement. American Journal of Pathology, 1999, 154, 1513-1524.	1.9	46
140	Protein-based therapies for acute lung injury: targeting neutrophil extracellular traps. Expert Opinion on Therapeutic Targets, 2014, 18, 703-714.	1.5	46
141	Role of the complement in experimental sepsis. Journal of Leukocyte Biology, 2008, 83, 467-470.	1.5	45
142	Attenuation of IgG immune complexâ€induced acute lung injury by silencing C5aR in lung epithelial cells. FASEB Journal, 2009, 23, 3808-3818.	0.2	45
143	Murine Complement Interactions withPseudomonas aeruginosaand Their Consequences During Pneumonia. American Journal of Respiratory Cell and Molecular Biology, 2003, 29, 432-438.	1.4	44
144	The interaction between <scp>C</scp> 5a and both <scp>C</scp> 5a <scp>R</scp> and <scp>C</scp> 5 <scp>L</scp> 2 receptors is required for production of <scp>G</scp> â€ <scp>CSF</scp> during acute inflammation. European Journal of Immunology, 2013, 43, 1907-1913.	1.6	44

#	Article	IF	CITATIONS
145	A key role of C5a/C5aR activation for the development of sepsis. Journal of Leukocyte Biology, 2003, 74, 966-970.	1.5	43
146	C5a-Blockade Improves Burn-Induced Cardiac Dysfunction. Journal of Immunology, 2007, 178, 7902-7910.	0.4	43
147	Experimental design of complement component 5a-induced acute lung injury (C5a-ALI): a role of CC-chemokine receptor type 5 during immune activation by anaphylatoxin. FASEB Journal, 2015, 29, 3762-3772.	0.2	43
148	Role of nitric oxide in acute lung inflammation: Lessons learned from the inducible nitric oxide synthase knockout mouse*. Critical Care Medicine, 2002, 30, 1960-1968.	0.4	42
149	New developments in C5a receptor signaling. Cell Health and Cytoskeleton, 2012, 4, 73.	0.7	42
150	Interruption of Macrophage-Derived IL-27(p28) Production by IL-10 during Sepsis Requires STAT3 but Not SOCS3. Journal of Immunology, 2014, 193, 5668-5677.	0.4	42
151	Activator Protein-1 Activation in Acute Lung Injury. American Journal of Pathology, 2002, 161, 275-282.	1.9	41
152	Complement and sepsis-induced heart dysfunction. Molecular Immunology, 2017, 84, 57-64.	1.0	41
153	Recruitment of inflammatory cells into lung: Roles of cytokines, adhesion molecules, and complement. Translational Research, 1997, 129, 400-404.	2.4	39
154	Complementâ€induced activation of MAPKs and Akt during sepsis: role in cardiac dysfunction. FASEB Journal, 2017, 31, 4129-4139.	0.2	39
155	Selectin Inhibition Modulates Akt/MAPK Signaling and Chemokine Expression After Liver Ischemia–Reperfusion. Journal of Investigative Surgery, 2004, 17, 303-313.	0.6	38
156	CD11c+ Alveolar Macrophages are a Source of IL-23 During Lipopolysaccharide-Induced Acute Lung Injury. Shock, 2013, 39, 447-452.	1.0	38
157	Hydrogen peroxide-induced cell and tissue injury: Protective effects of Mn2+. Inflammation, 1991, 15, 291-301.	1.7	37
158	Therapeutic potential of targeting ILâ€17 and ILâ€23 in sepsis. Clinical and Translational Medicine, 2012, 1, 4.	1.7	37
159	The molecular fingerprint of lung inflammation after blunt chest trauma. European Journal of Medical Research, 2015, 20, 70.	0.9	37
160	Organ distribution of histones after intravenous infusion of FITC histones or after sepsis. Immunologic Research, 2015, 61, 177-186.	1.3	36
161	ESTERASES OF THE POLYMORPHONUCLEAR LEUKOCYTE CAPABLE OF HYDROLYZING ACETYL DL-PHENYL-ALANINE ß-NAPHTHYL ESTER. Journal of Experimental Medicine, 1969, 129, 569-584.	4.2	35
162	Neutrophil Depletion and Chemokine Response after Liver Ischemia and Reperfusion. Journal of Investigative Surgery, 2001, 14, 99-107.	0.6	35

PETER A WARD

#	Article	IF	CITATIONS
163	A Historical Perspective on Sepsis. American Journal of Pathology, 2012, 181, 2-7.	1.9	35
164	Acute lung injury and the role of histones. Translational Respiratory Medicine, 2014, 2, 1.	3.8	35
165	Bidirectional Crosstalk between C5a Receptors and the NLRP3 Inflammasome in Macrophages and Monocytes. Mediators of Inflammation, 2016, 2016, 1-11.	1.4	35
166	Role of complement C5a and histones in septic cardiomyopathy. Molecular Immunology, 2018, 102, 32-41.	1.0	34
167	New Insights into Cellular Mechanisms During Sepsis. Immunologic Research, 2006, 34, 133-142.	1.3	33
168	Adenoviral-Mediated Overexpression of SOCS3 Enhances IgG Immune Complex-Induced Acute Lung Injury. Journal of Immunology, 2006, 177, 612-620.	0.4	33
169	Divergent Signaling Pathways in Phagocytic Cells during Sepsis. Journal of Immunology, 2006, 177, 1306-1313.	0.4	33
170	The sepsis seesaw: seeking a heart salve. Nature Medicine, 2009, 15, 497-498.	15.2	33
171	Experimental Malaria in Pregnancy Induces Neurocognitive Injury in Uninfected Offspring via a C5a-C5a Receptor Dependent Pathway. PLoS Pathogens, 2015, 11, e1005140.	2.1	33
172	Differing Patterns of P-Selectin Expression in Lung Injury. American Journal of Pathology, 1998, 153, 1113-1122.	1.9	32
173	Persistent Neutrophil Dysfunction and Suppression of Acute Lung Injury in Mice following Cecal Ligation and Puncture Sepsis. Journal of Innate Immunity, 2014, 6, 695-705.	1.8	32
174	Roles for C-X-C chemokines and C5a in lung injury after hindlimb ischemia-reperfusion. American Journal of Physiology - Lung Cellular and Molecular Physiology, 1999, 276, L57-L63.	1.3	30
175	ENDOTHELIAL CELL DETERMINANTS OF SUSCEPTIBILITY TO NEUTROPHIL-MEDIATED KILLING. Shock, 1999, 12, 111-117.	1.0	30
176	Regulatory effects of C5a on IL-17A, IL-17F, and IL-23. Frontiers in Immunology, 2013, 3, 387.	2.2	30
177	New Insights into Molecular Mechanisms of Immune Complex-Induced Injury in Lung. Frontiers in Immunology, 2016, 7, 86.	2.2	30
178	Anti-inflammatory strategies for the treatment of sepsis. Expert Opinion on Biological Therapy, 2003, 3, 339-350.	1.4	29
179	Role of C5 Activation Products in Sepsis. Scientific World Journal, The, 2010, 10, 2395-2402.	0.8	29
180	C5a, a Therapeutic Target in Sepsis. Recent Patents on Anti-infective Drug Discovery, 2006, 1, 57-65.	0.5	28

#	Article	IF	CITATIONS
181	The Outcome of Polymicrobial Sepsis Is Independent of T and B CellS. Shock, 2011, 36, 396-401.	1.0	28
182	MyD88â€dependent production of ILâ€17F is modulated by the anaphylatoxin C5a <i>via</i> the Akt signaling pathway. FASEB Journal, 2011, 25, 4222-4232.	0.2	28
183	Exogenous and Endogenous Nitric Oxide but Not iNOS Inhibition Improves Function and Survival of Ischemically Injured Livers. Journal of Investigative Surgery, 2001, 14, 267-273.	0.6	27
184	Systemic and lung physiological changes in rats after intravascular activation of complement. Journal of Applied Physiology, 2001, 90, 2289-2295.	1.2	27
185	Role of chemotactic factors in neutrophil activation after thermal injury in rats. Cellular and Molecular Neurobiology, 1998, 18, 609-620.	1.7	26
186	Manipulation of the Complement System for Benefit in Sepsis. Critical Care Research and Practice, 2012, 2012, 1-8.	0.4	25
187	Regulation of IL-17 Family Members by Adrenal Hormones During Experimental Sepsis in Mice. American Journal of Pathology, 2013, 182, 1124-1130.	1.9	25
188	Disruption of Neutrophil Extracellular Traps (NETs) Links Mechanical Strain to Post-traumatic Inflammation. Frontiers in Immunology, 2019, 10, 2148.	2.2	25
189	Effects of Adenosine on Inositol 1,4,5-Trisphosphate Formation and Intracellular Calcium Changes in Formyl-Met-Leu-Phe-Stimulated Human Neutrophils. Journal of Leukocyte Biology, 1990, 48, 281-283.	1.5	24
190	Cytokine responses of human blood monocytes stimulated with Igs. Inflammation, 1997, 21, 501-517.	1.7	24
191	Regulatory Effects of Eotaxin on Acute Lung Inflammatory Injury. Journal of Immunology, 2001, 166, 5208-5218.	0.4	24
192	Cutting Edge: Critical Role for C5aRs in the Development of Septic Lymphopenia in Mice. Journal of Immunology, 2015, 194, 868-872.	0.4	23
193	Fingerprinting of the TLR4-induced acute inflammatory response. Experimental and Molecular Pathology, 2012, 93, 319-323.	0.9	22
194	Tyrosine kinase 2 promotes sepsis-associated lethality by facilitating production of interleukin-27. Journal of Leukocyte Biology, 2014, 96, 123-131.	1.5	22
195	GM-CSF Administration Improves Defects in Innate Immunity and Sepsis Survival in Obese Diabetic Mice. Journal of Immunology, 2019, 202, 931-942.	0.4	22
196	Complement as a Major Inducer of Harmful Events in Infectious Sepsis. Shock, 2020, 54, 595-605.	1.0	21
197	A Comparative Study of Pulmonary Fibrosis Induced by Bleomycin and an O2 Metabolite Producing Enzyme System. Chest, 1983, 83, 44S-45S.	0.4	20
198	Disturbances of the hypothalamic-pituitary-adrenal axis and plasma electrolytes during experimental sepsis. Annals of Intensive Care, 2011, 1, 53.	2.2	20

#	Article	IF	CITATIONS
199	Harmful Roles of TLR3 and TLR9 in Cardiac Dysfunction Developing during Polymicrobial Sepsis. BioMed Research International, 2018, 2018, 1-10.	0.9	20
200	Role of Complement and Histones in Sepsis. Frontiers in Medicine, 2020, 7, 616957.	1.2	20
201	Selective Biological Responses of Phagocytes and Lungs to Purified Histones. Journal of Innate Immunity, 2017, 9, 300-317.	1.8	18
202	Endogenous regulation of the acute inflammatory response. Molecular and Cellular Biochemistry, 2002, 234-235, 225-8.	1.4	18
203	Regulatory effects of interleukin-11 during acute lung inflammatory injury. Journal of Leukocyte Biology, 1999, 66, 151-157.	1.5	17
204	Anti-complement Strategies in Experimental Sepsis. Scandinavian Journal of Infectious Diseases, 2003, 35, 601-603.	1.5	17
205	Requirement of Complement C6 for Intact Innate Immune Responses in Mice. Journal of Immunology, 2020, 205, 251-260.	0.4	17
206	Blood mononuclear cell production of TNF-α and IL-8: engagement of different signal transduction pathways including the p42 MAP kinase pathway. Journal of Leukocyte Biology, 1998, 64, 124-133.	1.5	16
207	Formyl peptide chemotaxis receptors on the rat neutrophil: Experimental evidence for negative cooperativity. Journal of Cellular Biochemistry, 1985, 27, 359-375.	1.2	15
208	A sulfatide receptor distinct from L-selectin is involved in lymphocyte activation. FEBS Letters, 1997, 418, 310-314.	1.3	15
209	Better Understanding of Organ Dysfunction Requires Proteomic Involvement. Journal of Proteome Research, 2006, 5, 1060-1062.	1.8	15
210	An endogenous factor mediates shock-induced injury. Nature Medicine, 2013, 19, 1368-1369.	15.2	14
211	Molecular Cloning and Characterization of a Novel Human CC Chemokine, SCYA26. Genomics, 1999, 58, 313-317.	1.3	13
212	Acute and Chronic Inflammation. , 0, , 1-16.		11
213	Lung inflammation and damage induced by extracellular histones. Inflammation and Cell Signaling, 2014, 1, .	1.6	11
214	Mechanisms of inflammatory response syndrome in sepsis. Drug Discovery Today Disease Mechanisms, 2004, 1, 345-350.	0.8	9
215	The curiosity of IL-15. Nature Medicine, 2007, 13, 903-904.	15.2	9
216	Complement-induced impairment of the innate immune system during sepsis. Current Infectious Disease Reports, 2005, 7, 349-354.	1.3	8

#	Article	IF	CITATIONS
217	Adenovirus-Mediated In Vivo Silencing of Anaphylatoxin Receptor C5aR. Journal of Biomedicine and Biotechnology, 2006, 2006, 1-9.	3.0	8
218	Complement-induced impairment of the innate immune system during sepsis. Current Allergy and Asthma Reports, 2004, 4, 359-364.	2.4	7
219	Cytokine and adhesion molecule requirements for lung injury induced by anti-glomerular basement membrane antibody. Inflammation, 1998, 22, 403-417.	1.7	6
220	Editorial Commentary: New Strategies for Treatment of Humans With Acute Lung Injury/Acute Respiratory Distress Syndrome. Clinical Infectious Diseases, 2015, 60, 596-597.	2.9	5
221	In Sepsis, Complement Is Alive and Well*. Critical Care Medicine, 2016, 44, 1026-1027.	0.4	4
222	Anti-inflammatory interventions—what has worked, not worked, and what may work inÂtheÂfuture. Translational Research, 2016, 167, 1-6.	2.2	4
223	Differential inflammatory responses of the native left and right ventricle associated with donor heart preservation. Physiological Reports, 2021, 9, e15004.	0.7	4
224	Regulation of inflammatory vascular damage. , 2000, 190, 343.		4
225	Mechanisms of neutrophil-mediated injury. Clinical and Experimental Immunology, 2008, 93, 2-2.	1.1	3
226	Resolvins on the way to resolution. Journal of Experimental Medicine, 2015, 212, 1142-1142.	4.2	2
227	Complement: an unfinished symphony. American Journal of Physiology - Renal Physiology, 2016, 311, F66-F67.	1.3	2
228	Do MDL-1+ cells play a broad role in acute inflammation?. Journal of Clinical Investigation, 2011, 121, 4234-4237.	3.9	2
229	Chapter 12 Endothelial cell injury and defense. Advances in Molecular and Cell Biology, 2005, , 335-364.	0.1	1
230	The First Fifty Years in Research. Annual Review of Pathology: Mechanisms of Disease, 2009, 4, 1-18.	9.6	1
231	The Bipolar Role of miR-466l in Inflammation. Immunity, 2013, 39, 801-802.	6.6	1
232	Editorial: Blockade of PD-1 and PD-L1 restores defective innate immune responses in leukocytes from septic humans. Journal of Leukocyte Biology, 2016, 100, 1229-1231.	1.5	1
233	In Vivo Biological Responses in the Presence or Absence of C3. , 2007, 598, 240-250.		1
234	Role of zonulin as prehaptoglobin2 in acute lung injury. FASEB Journal, 2011, 25, .	0.2	1

#	Article	IF	CITATIONS
235	Inflammatory Disorders. , 2007, , 1-5.		0
236	The Role of the Endothelium in Systemic Inflammatory Response Syndrome and Sepsis. , 2007, , 1294-1302.		0
237	On being a pathologist. Human Pathology, 2008, 39, 1719-1724.	1.1	0
238	Complement System. , 2017, , 785-812.		0
239	Complement and Its Consequences in Sepsis. , 2019, , 504-507.e1.		0
240	Functional Roles for C5a Receptors in Sepsis. FASEB Journal, 2008, 22, 48.10.	0.2	0
241	The Role of Complement in Sepsis. , 2009, , 794-798.		Ο
242	Neuroendocrine Regulation Of The IL-27-Dependent Immune Response In Macrophages. Blood, 2013, 122, 3460-3460.	0.6	0